Simulations of the Interannual Variability of Stratospheric Water Vapor

Abstract Observations and model results indicate that the quasi-biennial oscillation (QBO) modulation of stratospheric water vapor results from two causes. Dynamical redistribution of water vapor from the QBO-induced mean meridional circulation dominates the observed variability in the middle and upper stratosphere. In the lower stratosphere, the QBO water vapor variability is dominated by a “tape recorder” that results from the dehydration signal accompanying the QBO variation of the tropical cold point tropopause. It is suggested that another low frequency tape recorder exists due to ENSO modulations of the tropical tropopause, but insufficiently long observations of stratospheric water vapor exist to identify this in the observations.

[1]  Minghua Zhang,et al.  Tropical Cold Point Tropopause Characteristics Derived from ECMWF Reanalyses and Soundings , 2001 .

[2]  Minghua Zhang,et al.  Cooling trend of the tropical cold point tropopause temperatures and its implications , 2001 .

[3]  S. Sherwood,et al.  On the control of stratospheric humidity , 2000 .

[4]  Fei Wu,et al.  Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses , 2000 .

[5]  M. Geller,et al.  Transport Diagnostics of GCMs and Implications for 2D Chemistry-Transport Model of Troposphere and Stratosphere , 2000 .

[6]  C. Basdevant,et al.  An alternative mechanism explaining the hygropause formation in tropical regions , 2000 .

[7]  S. Oltmans,et al.  Comment on “A reexamination of the ‘Stratospheric Fountain’ Hypothesis” by A. E. Dessler , 1999 .

[8]  L. Bengtsson,et al.  Potential role of the quasi-biennial oscillation in the stratosphere-troposphere exchange as found in water vapor in general circulation model experiments , 1999 .

[9]  J. Russell,et al.  Space‐time patterns of trends in stratospheric constituents derived from UARS measurements , 1999 .

[10]  Richard Swinbank,et al.  Global QBO Circulation Derived from UKMO Stratospheric Analyses , 1999 .

[11]  M. Geller,et al.  A two‐dimensional model with input parameters from a general circulation model: Ozone sensitivity to different formulations for the longitudinal temperature variation , 1998 .

[12]  Andrew E. Dessler,et al.  A reexamination of the “stratospheric fountain” hypothesis , 1998 .

[13]  James M. Russell,et al.  Vertical velocity, vertical diffusion, and dilution by midlatitude air in the tropical lower stratosphere , 1998 .

[14]  James M. Russell,et al.  Seasonal Cycles and QBO Variations in Stratospheric CH4 and H2O Observed in UARS HALOE Data , 1998 .

[15]  T. Dunkerton,et al.  The influence of the quasi‐biennial oscillation on global constituent distributions , 1997 .

[16]  R. R. Conway,et al.  Seasonal variation of middle atmospheric CH4 and H2O with a new chemical‐dynamical model , 1997 .

[17]  Wesley A. Traub,et al.  Validation of measurements of water vapor from the Halogen Occultation Experiment (HALOE) , 1996 .

[18]  P. Mote,et al.  An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor , 1996 .

[19]  P. Crutzen,et al.  New evidence for the stratospheric dehydration mechanism in the equatorial Pacific , 1995 .

[20]  J. Holton,et al.  Stratosphere‐troposphere exchange , 1995 .

[21]  James M. Russell,et al.  The Halogen Occultation Experiment , 1993 .

[22]  John M. Wallace,et al.  Representation of the Equatorial Stratospheric Quasi-Biennial Oscillation in EOF Phase Space , 1993 .

[23]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[24]  E. Danielsen A dehydration mechanism for the stratosphere , 1982 .

[25]  R. Newell,et al.  A Stratospheric Fountain , 1981 .