Numerical analysis of a relaxed variational model of hysteresis in two-phase solids

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization. The proposed scheme enables numerical simulations which show that the model allows for hysteresis.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  A. Mielke,et al.  A Variational Formulation of¶Rate-Independent Phase Transformations¶Using an Extremum Principle , 2002 .

[3]  Carsten Carstensen,et al.  Local Stress Regularity in Scalar Nonconvex Variational Problems , 2002, SIAM J. Math. Anal..

[4]  M. Fuchs,et al.  Local regularity of solutions of variational problems for the equilibrium configuration of an incompressible, multiphase elastic body , 2001 .

[5]  Annie Raoult,et al.  Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results , 2000 .

[6]  Carsten Carstensen,et al.  Numerical Analysis of Compatible Phase Transitions in Elastic Solids , 2000, SIAM J. Numer. Anal..

[7]  Carsten Carstensen,et al.  Fully Reliable Localized Error Control in the FEM , 1999, SIAM J. Sci. Comput..

[8]  Carsten Carstensen,et al.  Numerical solution of the scalar double-well problem allowing microstructure , 1997, Math. Comput..

[9]  Mitchell Luskin,et al.  On the computation of crystalline microstructure , 1996, Acta Numerica.

[10]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[11]  R. D. James,et al.  Proposed experimental tests of a theory of fine microstructure and the two-well problem , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[12]  Robert V. Kohn,et al.  The relaxation of a double-well energy , 1991 .

[13]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[14]  R. Kohn,et al.  Numerical study of a relaxed variational problem from optimal design , 1986 .

[15]  C. Carstensen,et al.  Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .

[16]  E. Stein,et al.  Modelling of hysteresis in two-phase systems , 1999 .

[17]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[18]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[19]  A. G. Khachaturi︠a︡n Theory of structural transformations in solids , 1983 .

[20]  A. L. Roitburd,et al.  Martensitic Transformation as a Typical Phase Transformation in Solids , 1978 .

[21]  I. Fonseca,et al.  F Ur Mathematik in Den Naturwissenschaften Leipzig A-quasiconvexity, Lower Semicontinuity and Young Measures , 2022 .