9. Multiple Imputation of Incomplete Categorical Data Using Latent Class Analysis
暂无分享,去创建一个
van der Ark | Sijtsma | J. Vermunt | K. Sijtsma | Van Ginkel | J. R. Ginkel | A. V. D. Ark
[1] José G. Dias,et al. A bootstrap-based aggregate classifier for model-based clustering , 2008, Comput. Stat..
[2] P. Deb. Finite Mixture Models , 2008 .
[3] Paul T. von Hippel,et al. Regression with missing Ys: An improved strategy for analyzing multiply imputed data , 2007, 1605.01095.
[4] Klaas Sijtsma,et al. Multiple imputation for item scores when test data are factorially complex. , 2007, The British journal of mathematical and statistical psychology.
[5] Leo A. Goodman,et al. 1. On the Assignment of Individuals to Latent Classes , 2007 .
[6] van der Ark,et al. Multiple Imputation of Item Scores in Test and Questionnaire Data, and Influence on Psychometric Results , 2007, Multivariate behavioral research.
[7] Joseph L Schafer,et al. Robustness of a multivariate normal approximation for imputation of incomplete binary data , 2007, Statistics in medicine.
[8] D. Rubin,et al. Fully conditional specification in multivariate imputation , 2006 .
[9] Peter Hernon,et al. The Sage Encyclopedia of Social Science Research Methods: Edited by Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. 3 vols. Thousand Oaks, CA: Sage Publications, 2004. 1305 pp. $450.00. ISBN 0-7619-2363-2 , 2004 .
[10] Nicholas J. Horton,et al. A Potential for Bias When Rounding in Multiple Imputation , 2003 .
[11] Jeroen K. Vermunt,et al. 7. Multilevel Latent Class Models , 2003 .
[12] Rick L. Andrews,et al. A Comparison of Segment Retention Criteria for Finite Mixture Logit Models , 2003 .
[13] Jay Magidson,et al. Latent class models for classification , 2003, Comput. Stat. Data Anal..
[14] Roderick J. A. Little,et al. Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .
[15] J. Schafer,et al. Missing data: our view of the state of the art. , 2002, Psychological methods.
[16] G. King,et al. Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation , 2001, American Political Science Review.
[17] G. McLachlan,et al. Finite Mixture Models , 2000, Wiley Series in Probability and Statistics.
[18] K Sijtsma,et al. Influence of Imputation and EM Methods on Factor Analysis when Item Nonresponse in Questionnaire Data is Nonignorable , 2000, Multivariate behavioral research.
[19] David E. Booth,et al. Analysis of Incomplete Multivariate Data , 2000, Technometrics.
[20] C. Mitchell Dayton,et al. Model Selection Information Criteria for Non-Nested Latent Class Models , 1997 .
[21] D. Rubin,et al. Handling “Don't Know” Survey Responses: The Case of the Slovenian Plebiscite , 1995 .
[22] D. Rubin. Multiple imputation for nonresponse in surveys , 1989 .
[23] Subir Ghosh,et al. Statistical Analysis With Missing Data , 1988 .
[24] R. Sugden. Multiple Imputation for Nonresponse in Surveys , 1988 .
[25] C. N. Morris,et al. The calculation of posterior distributions by data augmentation , 1987 .
[26] D. Rubin,et al. Multiple Imputation for Interval Estimation from Simple Random Samples with Ignorable Nonresponse , 1986 .
[27] C. Fuchs. Maximum Likelihood Estimation and Model Selection in Contingency Tables with Missing Data , 1982 .
[28] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[29] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[30] D. Rubin. INFERENCE AND MISSING DATA , 1975 .
[31] H. Akaike. A new look at the statistical model identification , 1974 .
[32] L. A. Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .
[33] Drew A. Linzer,et al. poLCA : Polytomous Variable Latent Class Analysis Version , 2007 .
[34] W. Munsters,et al. The traditional quantitative approach. Surveying cultural tourists: lessons from the ATLAS cultural tourism research project. , 2010 .
[35] Changjiang Xu,et al. Model Selection with Information Criteria , 2010 .
[36] Jay Magidson,et al. LG-Syntax user's guide: Manual for Latent GOLD 4.5 Syntax module , 2008 .
[37] J. Vermunt,et al. Latent class models in longitudinal research , 2007 .
[38] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[39] J. Vermunt,et al. Latent Gold 4.0 User's Guide , 2005 .
[40] Russell V. Lenth,et al. Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .
[41] J. Vermunt. Latent Class Models , 2004 .
[42] José G. Dias. Finite Mixture Models , 2004 .
[43] John Van Hoewyk,et al. A multivariate technique for multiply imputing missing values using a sequence of regression models , 2001 .
[44] Jay Magidson,et al. Latent Class Factor and Cluster Models, Bi-Plots, and Related Graphical Displays , 2001 .
[45] Martin Knott,et al. Weighting for item non‐response in attitude scales by using latent variable models with covariates , 2000 .
[46] M. Wedel,et al. Finite mixture models. Review, applications and computer-intensive methods , 2000 .
[47] Yang C. Yuan,et al. Multiple Imputation for Missing Data: Concepts and New Development , 2000 .
[48] S. van Buuren,et al. Multivariate Imputation by Chained Equations : Mice V1.0 User's manual , 2000 .
[49] J. Schafer,et al. On the performance of multiple imputation for multivariate data with small sample size , 1999 .
[50] Jeroen K. Vermunt,et al. 'EM: A general program for the analysis of categorical data 1 , 1997 .
[51] Jeroen K. Vermunt,et al. LEM: A general program for the analysis of categorical data. Users manual , 1997 .
[52] Roderick J. A. Little,et al. The NHANES III multiple imputation project , 1996 .
[53] Roderick J. A. Little,et al. A stimulation study to evaluate the performance of model-based multiple imputations in HCHS health examination surveys , 1995 .
[54] H. Bozdogan. Choosing the Number of Component Clusters in the Mixture-Model Using a New Informational Complexity Criterion of the Inverse-Fisher Information Matrix , 1993 .
[55] F. V. D. Pol,et al. MIXED MARKOV LATENT CLASS MODELS , 1990 .