Crystallization and characterization of the thallium form of the Oxytricha nova G-quadruplex

The crystal structure of the Tl+ form of the G-quadruplex formed from the Oxytricha nova telomere sequence, d(G4T4G4), has been solved to 1.55 Å. This G-quadruplex contains five Tl+ ions, three of which are interspersed between adjacent G-quartet planes and one in each of the two thymine loops. The structure displays a high degree of similarity to the K+ crystal structure [Haider et al. (2002), J. Mol. Biol., 320, 189–200], including the number and location of the monovalent cation binding sites. The highly isomorphic nature of the two structures, which contain such a large number of monovalent binding sites (relative to nucleic acid content), verifies the ability of Tl+ to mimic K+ in nucleic acids. Information from this report confirms and extends the assignment of 205Tl resonances from a previous report [Gill et al. (2005), J. Am. Chem. Soc., 127, 16 723–16 732] where 205Tl NMR was used to study monovalent cation binding to this G-quadruplex. The assignment of these resonances provides evidence for the occurrence of conformational dynamics in the thymine loop region that is in slow exchange on the 205Tl timescale.

[1]  G. Parkinson,et al.  A thymine tetrad in d(TGGGGT) quadruplexes stabilized with Tl+/Na+ ions. , 2004, Nucleic acids research.

[2]  T. Cech Beginning to Understand the End of the Chromosome , 2004, Cell.

[3]  Stephen Neidle,et al.  Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. , 2002, Journal of molecular biology.

[4]  S. Strobel,et al.  Structural Evidence for a Two-Metal-Ion Mechanism of Group I Intron Splicing , 2005, Science.

[5]  E. J. Wells,et al.  Theory of Chemical Exchange Effects in Magnetic Resonance , 1965 .

[6]  P C Moody,et al.  The high-resolution crystal structure of a parallel-stranded guanine tetraplex. , 1994, Science.

[7]  K. Wilson,et al.  Efficient anisotropic refinement of macromolecular structures using FFT. , 1999, Acta crystallographica. Section D, Biological crystallography.

[8]  J. F. Hinton Thallium NMR spectroscopy , 1982 .

[9]  J. Feigon,et al.  Ammonium Ion as an NMR Probe for Monovalent Cation Coordination Sites of DNA Quadruplexes , 1998 .

[10]  J. P. Loria,et al.  Conservation of mus-ms enzyme motions in the apo- and substrate-mimicked state. , 2005, Journal of the American Chemical Society.

[11]  L. Marky,et al.  Structure of B-DNA with cations tethered in the major groove. , 2005, Biochemistry.

[12]  R. Griffin,et al.  Localization of 23 Na+ in a DNA Quadruplex by High Field Solid State NMR. , 2000 .

[13]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[14]  R. Wells,et al.  Unusual DNA structures in the adenovirus genome. , 1986, The Journal of biological chemistry.

[15]  A. V. Harcourt XLIV.—On the observation of the course of chemical change , 2022 .

[16]  E. Blackburn,et al.  An overhanging 3' terminus is a conserved feature of telomeres , 1989, Molecular and cellular biology.

[17]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[18]  C B Harley,et al.  Specific association of human telomerase activity with immortal cells and cancer. , 1994, Science.

[19]  J. F. Hinton,et al.  Equilibrium binding constants for the group I metal cations with gramicidin-A determined by competition studies and T1+-205 nuclear magnetic resonance spectroscopy. , 1986, Biophysical journal.

[20]  C. A. Thomas,et al.  The cohering telomeres of Oxytricha. , 1987, Nucleic acids research.

[21]  T. Cech,et al.  Monovalent cation-induced structure of telomeric DNA: The G-quartet model , 1989, Cell.

[22]  B. Halle,et al.  Competitive Na(+) and Rb(+) binding in the minor groove of DNA. , 2004, Journal of the American Chemical Society.

[23]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[24]  Gang Wu,et al.  Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate: a solid-state NMR study. , 2003, Journal of the American Chemical Society.

[25]  C D Kroenke,et al.  Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. , 2001, Methods in enzymology.

[26]  P. Laszlo,et al.  Role of alkali metal and ammonium cations in the self-assembly of the 5'-guanosine monophosphate dianion , 1980 .

[27]  D. Patel,et al.  Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. , 1993, Structure.

[28]  E. Schon,et al.  S1-hypersensitive sites in eukaryotic promoter regions. , 1984, Nucleic acids research.

[29]  J. Feigon,et al.  The effect of sodium, potassium and ammonium ions on the conformation of the dimeric quadruplex formed by the Oxytricha nova telomere repeat oligonucleotide d(G(4)T(4)G(4)). , 1999, Nucleic acids research.

[30]  D. VanDerveer,et al.  Locating monovalent cations in the grooves of B-DNA. , 2001, Biochemistry.

[31]  P. Laszlo,et al.  Role of alkali metal and ammonium cations in the self-assembly of the 5'-guanosine monophosphate dianion , 1980 .

[32]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[33]  Gang Wu,et al.  Direct NMR detection of the "invisible" alkali metal cations tightly bound to G-quadruplex structures. , 2005, Biochemical and biophysical research communications.

[34]  J. Feigon,et al.  Quadruplex structure of Oxytricha telomeric DNA oligonucleotides , 1992, Nature.

[35]  J. Feigon,et al.  Strand orientation in the DNA quadruplex formed from the Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution. , 1993, Biochemistry.

[36]  L. Kay,et al.  Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. , 2002, Journal of the American Chemical Society.

[37]  J. Feigon,et al.  Localization of ammonium ions in the minor groove of DNA duplexes in solution and the origin of DNA A-tract bending. , 1999, Journal of molecular biology.

[38]  J. R. Williamson,et al.  G-quartet structures in telomeric DNA. , 1994, Annual review of biophysics and biomolecular structure.

[39]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[40]  S. Neidle,et al.  A G-quadruplex-interactive potent small-molecule inhibitor of telomerase exhibiting in vitro and in vivo antitumor activity. , 2002, Molecular pharmacology.

[41]  D. Patel,et al.  A K cation-induced conformational switch within a loop spanning segment of a DNA quadruplex containing G-G-G-C repeats. , 1998, Journal of molecular biology.

[42]  Jennifer A. Doudna,et al.  A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor , 1998, Nature Structural Biology.

[43]  W. Gilbert,et al.  Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis , 1988, Nature.

[44]  G N Murshudov,et al.  Incorporation of prior phase information strengthens maximum-likelihood structure refinement. , 1998, Acta crystallographica. Section D, Biological crystallography.

[45]  Stephen Neidle,et al.  Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Eaton E Lattman,et al.  A compact RNA tertiary structure contains a buried backbone-K+ complex. , 2002, Journal of molecular biology.

[47]  L. Hurley,et al.  G-quadruplex DNA: a potential target for anti-cancer drug design. , 2000, Trends in pharmacological sciences.

[48]  Stephen Neidle,et al.  Crystal structure of parallel quadruplexes from human telomeric DNA , 2002, Nature.

[49]  C. Venkatachalam,et al.  Carbon-13 nuclear magnetic resonance study of potassium and thallium ion binding to the Gramicidin A transmembrane channel , 1985 .

[50]  G. Parkinson,et al.  The structure of telomeric DNA. , 2003, Current opinion in structural biology.

[51]  J. Feigon,et al.  Solution nuclear magnetic resonance probing of cation binding sites on nucleic acids. , 2001, Methods in enzymology.

[52]  J. Feigon,et al.  Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). , 1994, Structure.

[53]  Scott A. Strobel,et al.  Crystal structure of a self-splicing group I intron with both exons , 2004, Nature.

[54]  J. Hinton Thallium NMR spectroscopy , 1987 .

[55]  S C Schultz,et al.  DNA G-quartets in a 1.86 A resolution structure of an Oxytricha nova telomeric protein-DNA complex. , 2001, Journal of molecular biology.

[56]  S. Strobel,et al.  Direct Detection of Monovalent Metal Ion Binding to a DNA G-quartet by 205Tl NMR , 2000 .

[57]  Jeffery T. Davis,et al.  Direct detection of potassium cations bound to G-quadruplex structures by solid-state 39K NMR at 19.6 T. , 2003, Journal of the American Chemical Society.

[58]  J Patrick Loria,et al.  205Tl NMR methods for the characterization of monovalent cation binding to nucleic acids. , 2005, Journal of the American Chemical Society.

[59]  A. Mildvan,et al.  Thallium-205 nuclear relaxation and kinetic studies of sodium and potassium ion-activated adenosine triphosphatase. , 1974, The Journal of biological chemistry.

[60]  J. Feigon,et al.  Binding sites and dynamics of ammonium ions in a telomere repeat DNA quadruplex. , 1999, Journal of molecular biology.

[61]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[62]  A. Rich,et al.  Crystal structure of four-stranded Oxytricha telomeric DNA , 1992, Nature.

[63]  E. Raymond,et al.  Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. , 1999, Cancer research.

[64]  A. Palmer,et al.  A Relaxation-Compensated Carr−Purcell−Meiboom−Gill Sequence for Characterizing Chemical Exchange by NMR Spectroscopy , 1999 .

[65]  P. Näslund,et al.  Effects of thallium (I) on the structure and functions of mammalian ribosomes. , 1974, Chemico-biological interactions.