Arnoldi versus GMRES for computing pageRank: A theoretical contribution to google's pageRank problem

PageRank is one of the most important ranking techniques used in today's search engines. A recent very interesting research track focuses on exploiting efficient numerical methods to speed up the computation of PageRank, among which the Arnoldi-type algorithm and the GMRES algorithm are competitive candidates. In essence, the former deals with the PageRank problem from an eigenproblem, while the latter from a linear system, point of view. However, there is little known about the relations between the two approaches for PageRank. In this article, we focus on a theoretical and numerical comparison of the two approaches. Numerical experiments illustrate the effectiveness of our theoretical results.

[1]  Gang Wu,et al.  An Arnoldi-Extrapolation algorithm for computing PageRank , 2010, J. Comput. Appl. Math..

[2]  Yimin Wei,et al.  On computing PageRank via lumping the Google matrix , 2009 .

[3]  Ilse C. F. Ipsen,et al.  Ordinal Ranking for Google's PageRank , 2008, SIAM J. Matrix Anal. Appl..

[4]  Francesco Romani,et al.  Comparison of Krylov subspace methods on the PageRank problem , 2007 .

[5]  Gang Wu,et al.  A Power–Arnoldi algorithm for computing PageRank , 2007, Numer. Linear Algebra Appl..

[6]  G. Golub,et al.  An Arnoldi-type algorithm for computing page rank , 2006 .

[7]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[8]  Tie-Yan Liu,et al.  Ranking Websites: A Probabilistic View , 2006, Internet Math..

[9]  Sebastiano Vigna,et al.  PageRank as a function of the damping factor , 2005, WWW '05.

[10]  Pavel Berkhin,et al.  A Survey on PageRank Computing , 2005, Internet Math..

[11]  Ramesh Govindan,et al.  Making Eigenvector-Based Reputation Systems Robust to Collusion , 2004, WAW.

[12]  Francesco Romani,et al.  Fast PageRank Computation via a Sparse Linear System , 2004, Internet Math..

[13]  Dianne P. O'Leary,et al.  Complete stagnation of gmres , 2003 .

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[16]  Valeria Simoncini,et al.  On the Convergence of Restarted Krylov Subspace Methods , 2000, SIAM J. Matrix Anal. Appl..

[17]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[18]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[19]  Jia Zhongxiao,et al.  Composite orthogonal projection methods for large matrix eigenproblems , 1989 .

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[22]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[23]  O. Schneider Krylov subspace methods for computing stationary probability distributions of CTMCs , 2006 .

[24]  David F. Gleich,et al.  Fast Parallel PageRank: A Linear System Approach , 2004 .