Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time

Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO2 between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO2 (gcmax) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO2, the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO2 over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest gcmax values required to counter CO2“starvation” at low atmospheric CO2 concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO2 impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO2 regimes. Selection for small S was crucial for attaining high gcmax under falling atmospheric CO2 and, therefore, may represent a mechanism linking CO2 and the increasing gas-exchange capacity of land plants over geologic time.

[1]  D. Dilcher CUTICULAR ANALYSIS OF EOCENE LEAVES OF OCOTEA OBTUSIFOLIA , 1963 .

[2]  Yao,et al.  Leaf morphology and cuticular features of Sphenophyllum in the Gigantopteris flora from South China. , 2000, Review of palaeobotany and palynology.

[3]  M. Abrams,et al.  Relating Wet and Dry Year Ecophysiology to Leaf Structure in Contrasting Temperate Tree Species , 1994 .

[4]  J. McElwain,et al.  Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon Dioxide in the Palaeozoic , 1995 .

[5]  R. Gastaldo,et al.  Stem and Leaf Cuticle of Karinopteris: Source of Cuticles from the Indiana "Paper" Coal , 1984 .

[6]  A. Knoll,et al.  Patterns in vascular land plant diversification , 1983, Nature.

[7]  F. Woodward,et al.  The influence of CO2 concentration on stomatal density , 1995 .

[8]  D. Beerling,et al.  CO2‐forced evolution of plant gas exchange capacity and water‐use efficiency over the Phanerozoic , 2009, Geobiology.

[9]  F. Woodward,et al.  Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record , 1997 .

[10]  Liliana Villar de Seoane Cuticular study of Bennettitales from the Springhill Formation, Lower Cretaceous of Patagonia, Argentina , 2001 .

[11]  S. Pallardy,et al.  Frequency and length of stomata of 21 Populus clones , 1979 .

[12]  D. Royer,et al.  Stomatal density and stomatal index as indicators of paleoatmospheric CO(2) concentration. , 2001, Review of palaeobotany and palynology.

[13]  S. Leavitt,et al.  Trends in Stomatal Density and 13C/12C Ratios of Pinus flexilis Needles During Last Glacial-Interglacial Cycle , 1994, Science.

[14]  C. Black,et al.  The effect of elevated atmospheric CO2 and drought onstomatal frequency in groundnut (Arachis hypogaea (L.)) , 1995 .

[15]  T. Taylor,et al.  A new species of Eoginkgoites from the Upper Triassic of , 1995 .

[16]  Z. Zhou ON SOME CRETACEOUS PSEUDOFRENELOPSIDS WITH A BRIEF REVIEW OF CHEIROLEPIDIACEOUS CONIFERS IN CHINA , 1995 .

[17]  R. Hill Three new Eocene cycads from eastern Australia , 1980 .

[18]  F. I. Woodward,et al.  Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels , 1987, Nature.

[19]  J. Watson,et al.  A new conifer genus from the Lower Cretaceous Glen Rose Formation, Texas , 1984 .

[20]  R. V. D. Ham,et al.  (Miquel) comb. nov. (Cheirolepidiaceae?): remarkable conifer foliage from the Maastrichtian type area (Late Cretaceous, NE Belgium, SE Netherlands) , 2003 .

[21]  Dominique C Bergmann,et al.  Stomatal Development and Pattern Controlled by a MAPKK Kinase , 2004, Science.

[22]  V. Srinivasan Conifers from the Puddledock locality (Potomac Group, Early Cretaceous) in eastern North America , 1995 .

[23]  G. Farquhar,et al.  The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. , 2001, Plant physiology.

[24]  W. H. Lang,et al.  The lower Devonian flora of the Senni Beds of Monmouthshire and Breconshire , 1942, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[25]  J. Pšenička,et al.  Cuticles and spores of Senftenbergia plumosa (Artis) Bek and Pšenička from the Carboniferous of Pilsen Basin, Bohemian Massif , 2003 .

[26]  C. Pott,et al.  A surface microrelief on the leaves of Glossophyllum florinii (?Ginkgoales) from the Upper Triassic of Lunz, Austria , 2007 .

[27]  S. Ash Two new late Triassic plants from the Petrified Forest of Arizona , 1973 .

[28]  Li Cheng-sen Hsüa robusta, a new land plant from the Lower Devonian of Yunnan, China , 1982 .

[29]  A. Archangelsky,et al.  Araucaria grandifolia Feruglio from the Lower Cretaceous of Patagonia, Argentina , 2002 .

[30]  P. Herendeen,et al.  Gleichenia chaloneri-a New Fossil Fern from the Lower Cretaceous (Albian) of England , 1998, International Journal of Plant Sciences.

[31]  D. Bergmann,et al.  Stomatal development. , 2007, Annual review of plant biology.

[32]  J. Kvaček Cycadales and Bennettitales leaf compressions of the Bohemian Cenomanian, Central Europe , 1995 .

[33]  S. J. Brentnall,et al.  Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change , 2008 .

[34]  Wang Zi-qiang GIgantonoclea: an enigmatic Permian plant from North China , 1999 .

[35]  S. Hao,et al.  A new species of vascular plants from the Xujiachong Formation (Lower Devonian) of Yunnan Province, China. , 2001, Review of palaeobotany and palynology.

[36]  H. Kerp,et al.  Morphology, Growth Habit, and Ecology of Blanzyopteris praedentata (Gothan) nov. comb., a Climbing Neuropteroid Seed Fern from the Stephanian of Central France , 1999, International Journal of Plant Sciences.

[37]  Liliana Villar de Seoane Comparative study of extant and fossil conifer leaves from the Baqueró Formation (Lower Cretaceous), Santa Cruz Province, Argentina , 1998 .

[38]  R. Berner Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model , 2006, American Journal of Science.

[39]  F. Woodward,et al.  The role of stomata in sensing and driving environmental change , 2003, Nature.

[40]  Deming Wang,et al.  Hsüa deflexa sp. nov. from the Xujiachong Formation (Lower Devonian) of eastern Yunnan, China , 2003 .

[41]  T. Taylor,et al.  Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. , 1998, American journal of botany.

[42]  S. Driscoll,et al.  Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. , 2006, Journal of experimental botany.

[43]  V. Mosbrugger,et al.  Cuticular anatomy of Sphenobaiera huangii (Ginkgoales) from the Lower Jurassic of Hubei, China. , 2005, American journal of botany.

[44]  A. Furukawa Stomatal frequency of Quercus myrsinaefolia grown under different irradiances , 2004, Photosynthetica.

[45]  S. Ash An Upper Triassic upland flora from north-central New Mexico, U.S.A. , 1999 .

[46]  I. R. Cowan,et al.  Guard cell bioenergetics. , 1987 .

[47]  A. Rogers,et al.  Rising atmospheric carbon dioxide: plants FACE the future. , 2004, Annual review of plant biology.

[48]  J. Schabilion,et al.  CUTICLES OF TWO SPECIES OF ALETHOPTERIS , 1976 .

[49]  D. Beerling,et al.  Feedbacks and the coevolution of plants and atmospheric CO2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Cantrill,et al.  Late Triassic plant fossils from the Prince Charles Mountains, East Antarctica , 1995, Antarctic Science.

[51]  B. Thomas THE CUTICLE OF THE LEPIDODENDROID STEM , 1966 .

[52]  D. Edwards,et al.  A new genus for isolated bivalved sporangia with thickened margins from the Lower Devonian of the Welsh Borderland , 2001 .

[53]  T. Sharkey,et al.  Stomatal conductance and photosynthesis , 1982 .

[54]  D. Beerling,et al.  Biophysical constraints on the origin of leaves inferred from the fossil record. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Lorch Some Jurassic conifers from Israel , 1968 .

[56]  Y. Kawamitsu,et al.  Relation between Leaf Gas Exchange Rate and Stomata : I. Stomatal frequency and guard cell length in C3 and C4 grass species , 1996 .

[57]  I. R. Cowan,et al.  Stomatal function in relation to leaf metabolism and environment. , 1977, Symposia of the Society for Experimental Biology.

[58]  Qing-Wen Ma,et al.  The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China , 2005 .

[59]  M. Mastalerz,et al.  Functional groups of fossil marattialeans: chemotaxonomic implications for Pennsylvanian tree ferns and pteridophylls , 2005 .

[60]  C. Cleal,et al.  Epidermal features of some Carboniferous neuropteroid fronds , 1992 .

[61]  T. Phillips,et al.  THE VEGETATIVE ANATOMY OF SCHOPFIASTRUM DECUSSATUM FROM THE MIDDLE PENNSYLVANIAN OF THE ILLINOIS BASIN , 1973 .

[62]  J. R. Thomasson Miocene Grass (Gramineae: Arundinoideae) Leaves Showing External Micromorphological and Internal Anatomical Features , 1984, Botanical Gazette.

[63]  D. Dilcher,et al.  A STUDY OF LEAF COMPRESSIONS OF KNIGHTIOPHYLLUM FROM EOCENE DEPOSITS OF SOUTHEASTERN NORTH AMERICA , 1969 .

[64]  D. C. Uprety,et al.  Effect of Elevated Carbon Dioxide Concentration on the Stomatal Parameters of Rice Cultivars , 2002, Photosynthetica.

[65]  B. Gomez,et al.  Late Cretaceous plants from the Bonarelli Level of the Venetian Alps, northeastern Italy , 2002 .

[66]  B. Huntley,et al.  Stomatal density responds to the glacial cycle of environmental change , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[67]  E. Zeiger,et al.  Modification of guard cell properties in advanced lines of Pima cotton bred for higher yields and heat resistance , 1995 .

[68]  C. Willmer,et al.  A light and electron microscopy study of the epidermis of Paphiopedilum spp. with emphasis on stomatal ultrastructure , 1979 .

[69]  T. Taylor,et al.  Ultrastructural studies of fossil plant cuticles. II: Tarphyderma gen. n., a cretaceous conifer from Argentina , 1986 .

[70]  S. Ash A new species of Williamsonia from the Upper Triassic Chinle Formation of New Mexico , 1968 .

[71]  I. Gindel Stomatal Number and Size as Related to Soil Moisture in Tree Xerophytes in Israel , 1969 .

[72]  B. Gomez A new species of Mirovia (Coniferales, Miroviaceae) from the Lower Cretaceous of the Iberian Ranges (Spain) , 2002 .

[73]  H. Hass,et al.  Stomata in early land plants: an anatomical and ecophysiological approach , 1998 .

[74]  S. B. Carpenter,et al.  Stomatal distribution and size in southern Appalachian hardwoods , 1975 .

[75]  Frédéric Thévenard Les coniférales du Jurassique inférieur du gisement de Chaldecoste, bassin des Causses (Lozère, France) , 1993 .

[76]  H. Kerp,et al.  Cuticles of Lescuropteris genuina from the Stephanian (Upper Carboniferous) of Central France: evidence for a climbing growth habit , 1997 .

[77]  C. Daghlian,et al.  THE CUTICULAR ANATOMY OF FRENELOPSIS VARIANS FROM THE LOWER CRETACEOUS OF CENTRAL TEXAS , 1977 .

[78]  G. Farquhar,et al.  A relationship between humidity response, growth form and photosynthetic operating point in C3 plants , 1999 .

[79]  J. E. Mickle Cuticular micromorphology of Pagiophyllum bladenensis, comb. nov., from the Late Cretaceous of the North Carolina Coastal Plain, U.S.A.1 , 1993 .

[80]  J. Kvaček,et al.  Monocotyledons from the Early Campanian (Cretaceous) of Grünbach, Lower Austria , 2004 .

[81]  J. Raven Selection pressures on stomatal evolution. , 2002, The New phytologist.

[82]  A. Bashforth,et al.  New cuticular morphotypes of Cordaites principalis from the Canadian Carboniferous Maritimes Basin , 2000 .

[83]  M. Wooller,et al.  Changes in graminoid stomatal morphology over the last glacial-interglacial transition: evidence from Mount Kenya, East Africa , 2002 .

[84]  John S. Sperry,et al.  Evolution of Water Transport and Xylem Structure , 2003, International Journal of Plant Sciences.

[85]  D. Cantrill Araucarian Foliage from the Lower Cretaceous of Southern Victoria, Australia , 1992, International Journal of Plant Sciences.

[86]  D. Edwards Cells and tissues in the vegetative sporophytes of early land plants. , 1993, The New phytologist.

[87]  E. Salisbury On the Causes and Ecological Significance of Stomatal Frequency, with Special Reference to the Woodland Flora , 1928 .

[88]  A. E. Artabe,et al.  Cuticular characters adapted to volcanic stress in a new Cretaceous cycad leaf from Patagonia, Argentina. Considerations on the stratigraphy and depositional history of the Baqueró Formation , 1995 .

[89]  B. M. Stidd,et al.  Paracytic (Syndetocheilic) Stomata in Carboniferous Seed Ferns , 1976, Science.

[90]  C. Cleal,et al.  Epidermal structure of some medullosan Neuropteris foliage from the middle and upper Carboniferous of Canada and Germany , 1989 .

[91]  C. Cleal,et al.  Variation in stomatal density in the Late Carboniferous gymnosperm frond Neuropteris ovata , 1999 .

[92]  F. Woodward,et al.  Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. , 2008, The New phytologist.

[93]  C. Cleal,et al.  Ecology And Growth Habit Of Laveineopteris: A Gymnosperm from the Late Carboniferous Tropical Rain Forests , 2002 .

[94]  Graham D. Farquhar,et al.  The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control[OA] , 2006, Plant Physiology.

[95]  Greenwood Early Tertiary Podocarpaceae: Megafossils from the Eocene Anglesea Locality, Victoria, Australia , 1987 .

[96]  S. Ash A New Pinnate Cycad Leaf from the Upper Triassic Chinle Formation of Arizona , 1991, Botanical Gazette.

[97]  J. Bäck,et al.  Effects of elevated [CO2] and O3 on stomatal and surface wax characteristics in leaves of pubescent birch grown under field conditions , 2001, Trees.