Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime

[1]  M. Ghandchi Tehrani,et al.  Nonlinear damping and quasi-linear modelling , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  M. Amabili,et al.  Experimental and theoretical study on large amplitude vibrations of clamped rubber plates , 2017 .

[3]  G. F. Lee,et al.  SPECIFIC DAMPING CAPACITY FOR ARBITRARY LOSS ANGLE , 1998 .

[4]  Daniel J. Inman,et al.  On damping mechanisms in beams , 1991 .

[5]  M. Amabili,et al.  Travelling wave and non-stationary response in nonlinear vibrations of water-filled circular cylindrical shells: Experiments and simulations , 2016 .

[6]  O. Gottlieb,et al.  Nonlinear damping in a micromechanical oscillator , 2009, 0911.0833.

[7]  E. Dowell,et al.  Linear Versus Nonlinear Response of a Cantilevered Beam Under Harmonic Base Excitation: Theory and Experiment , 2016 .

[8]  F. Alijani,et al.  Damping for large-amplitude vibrations of plates and curved panels, part 2: Identification and comparisons , 2016 .

[9]  Marco Amabili,et al.  Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections , 2006 .

[10]  Mohan D. Rao,et al.  Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes , 2003 .

[11]  A. Kareem,et al.  STRUCTURAL DAMPING , 2001 .

[12]  M. Amabili Reduced-order models for nonlinear vibrations, based on natural modes: the case of the circular cylindrical shell , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[14]  Marco Amabili,et al.  Nonlinear Vibrations and Stability of Shells and Plates , 2008 .

[15]  M. Amabili Nonlinear damping in large-amplitude vibrations: modelling and experiments , 2018 .

[16]  Wanbo Liu,et al.  Experimental and Analytical Estimation of Loss Factors by the Power Input Method , 2006 .

[17]  E. E. Ungar,et al.  Loss Factors of Viscoelastic Systems in Terms of Energy Concepts , 1962 .

[18]  Giuseppe Habib,et al.  Non-linear model-based estimation of quadratic and cubic damping mechanisms governing the dynamics of a chaotic spherical pendulum , 2012 .

[19]  J. Berthelot,et al.  Damping analysis of composite materials and structures , 2008 .

[20]  Marco Amabili,et al.  Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments , 2004 .

[21]  Marco Amabili,et al.  Damping for large-amplitude vibrations of plates and curved panels, Part 1: Modeling and experiments , 2016 .

[22]  M. Amabili Derivation of nonlinear damping from viscoelasticity in case of nonlinear vibrations , 2019 .

[23]  P. Guillaume,et al.  The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation? , 2004 .

[24]  J. Chaste,et al.  Nonlinear damping in mechanical resonators based on graphene and carbon nanotubes , 2011 .

[25]  S.-F. Ling,et al.  Identification of Damping Characteristics of Viscoelastically Damped Structures Using Vibration Test Results , 1996 .