Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations

In this paper, high-order numerical analysis of finite element method (FEM) is presented for two-dimensional multi-term time-fractional diffusion-wave equation (TFDWE). First of all, a fully-discrete approximate scheme for multi-term TFDWE is established, which is based on bilinear FEM in spatial direction and Crank-Nicolson approximation in temporal direction, respectively. Then the proposed scheme is proved to be unconditionally stable and convergent. And then, rigorous proofs are given here for superclose properties in H1−norm and temporal convergence in L2-norm with order $$O(h^{2}+\tau^{3-\alpha})$$O(h2+τ3−α), where h and τ are the spatial size and time step, respectively. At the same time, theoretical analysis of global superconvergence in H1-norm is derived by interpolation postprocessing technique. At last, numerical example is provided to demonstrate the theoretical analysis.

[1]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[2]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[3]  Xiaoyun Jiang,et al.  Thermal wave model of bioheat transfer with modified Riemann–Liouville fractional derivative , 2012 .

[4]  Mehdi Dehghan,et al.  Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations , 2015, J. Comput. Appl. Math..

[5]  Fawang Liu,et al.  Numerical methods of fractional partial differential equations and applications , 2015 .

[6]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[7]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[8]  Xianjuan Li,et al.  A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..

[9]  Bangti Jin,et al.  The Galerkin finite element method for a multi-term time-fractional diffusion equation , 2014, J. Comput. Phys..

[10]  Jiye Yang,et al.  Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations , 2015, J. Comput. Phys..

[11]  K. Burrage,et al.  Analytical solutions for the multi-term time–space Caputo–Riesz fractional advection–diffusion equations on a finite domain , 2012 .

[12]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[13]  Jingjun Zhao,et al.  Stability and Convergence of an Effective Finite Element Method for Multiterm Fractional Partial Differential Equations , 2013 .

[14]  I. Podlubny Fractional differential equations , 1998 .

[15]  F. Mainardi Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena , 1996 .

[16]  R. Gorenflo,et al.  Wright functions as scale-invariant solutions of the diffusion-wave equation , 2000 .

[17]  Tao Tang,et al.  A finite difference scheme for partial integro-differential equations with a weakly singular kernel , 1993 .

[18]  Varsha Daftardar-Gejji Fractional Calculus: Theory and Applications , 2014 .

[19]  Polymer translocation through a nanopore: a showcase of anomalous diffusion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Fawang Liu,et al.  Galerkin finite element approximation of symmetric space-fractional partial differential equations , 2010, Appl. Math. Comput..

[21]  Fawang Liu,et al.  Series expansion solutions for the multi-term time and space fractional partial differential equations in two- and three-dimensions , 2013 .

[22]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[23]  Fawang Liu,et al.  Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains , 2015 .

[24]  Chao Wu,et al.  Superconvergence Analysis for Linear Tetrahedral Edge Elements , 2015, J. Sci. Comput..

[25]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[26]  Jiwei Zhang,et al.  Superconvergence of Finite Element Approximations for the Fractional Diffusion-Wave Equation , 2017, J. Sci. Comput..

[27]  Mark M Meerschaert,et al.  FRACTIONAL PEARSON DIFFUSIONS. , 2013, Journal of mathematical analysis and applications.

[28]  Fawang Liu,et al.  Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations , 2014, Appl. Math. Comput..

[29]  P. Zhuang,et al.  A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation , 2015, Appl. Math. Comput..

[30]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[31]  Santos B. Yuste,et al.  An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form , 2011 .

[32]  Fawang Liu,et al.  Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain , 2012, Comput. Math. Appl..

[33]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[34]  X. Guan,et al.  CONVERGENCE AND SUPERCONVERGENCE ANALYSIS OF LAGRANGE RECTANGULAR ELEMENTS WITH ANY ORDER ON ARBITRARY RECTANGULAR MESHES , 2014 .

[35]  Rezvan Salehi,et al.  A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation , 2017, Numerical Algorithms.

[36]  Jincheng Ren,et al.  Efficient and stable numerical methods for multi-term time fractional sub-diffusion equations , 2014 .

[37]  Dongyang Shi,et al.  Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation , 2014, Appl. Math. Lett..

[38]  Pan Chen,et al.  Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations , 2017, J. Sci. Comput..

[39]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[40]  Jincheng Ren,et al.  Efficient numerical approximation of the multi-term time fractional diffusion-wave equations , 2015 .

[41]  Fawang Liu,et al.  Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations , 2017, Comput. Math. Appl..

[42]  Santos B. Yuste,et al.  On three explicit difference schemes for fractional diffusion and diffusion-wave equations , 2009 .

[43]  Sachin Bhalekar,et al.  Boundary value problems for multi-term fractional differential equations , 2008 .

[44]  Jiwei Zhang,et al.  Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation , 2018 .