Convergence of chemical mimicry in a guild of aphid predators

Abstract.  1. A variety of insects prey on honeydew‐producing Homoptera and many do so even in the presence of ants that tend, and endeavour to protect, these trophobionts from natural enemies. Few studies have explored the semiochemical mechanisms by which these predators circumvent attack by otherwise aggressive ants.

[1]  N. Pierce Predatory and parasitic Lepidoptera: carnivores living on plants. , 1995 .

[2]  A. Lenoir,et al.  Nest separation and the dynamics of the Gestalt odor in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae) , 1998, Behavioral Ecology and Sociobiology.

[3]  R. Clarke,et al.  Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies , 2002, Oecologia.

[4]  F. Gilbert,et al.  Oviposition preferences of aphidophagous hoverflies , 2000 .

[5]  Deborah M. Gordon,et al.  Harvester Ants Utilize Cuticular Hydrocarbons in Nestmate Recognition , 2000, Journal of Chemical Ecology.

[6]  H. Shibao,et al.  Costs and benefits of ant attendance to the drepanosiphid aphid Tuberculatus quercicola , 2000 .

[7]  S. Turillazzi,et al.  Deciphering the recognition signature within the cuticular chemical profile of paper wasps , 2001, Animal Behaviour.

[8]  K. Schönrogge,et al.  Changes in Chemical Signature and Host Specificity from Larval Retrieval to Full Social Integration in the Myrmecophilous Butterfly Maculinea rebeli , 2004, Journal of Chemical Ecology.

[9]  James R. Schott,et al.  Principles of Multivariate Analysis: A User's Perspective , 2002 .

[10]  V. Eastop,et al.  Survey of the World's Aphids , 1976 .

[11]  T. Akino,et al.  Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  R. V. Vander Meer,et al.  Nestmate Recognition in Ants , 2019, Pheromone Communication in Social Insects.

[13]  R. Akre,et al.  Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator, Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey, Myrmica incompleta Provancher (Hymenoptera: Formicidae). , 1990 .

[14]  K. Dettner,et al.  Recognition of aphid parasitoids by honeydew-collecting ants: The role of cuticular lipids in a chemical mimicry system , 1993, Journal of Chemical Ecology.

[15]  R. Boulay,et al.  Colony insularity through queen control on worker social motivation in ants , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  A. Gibbs The Role of Lipid Physical Properties in Lipid Barriers , 1998 .

[17]  T. Eisner,et al.  Characterization and synthesis of waxes from homopterous insects , 1975, Journal of Chemical Ecology.

[18]  G. S. Albuquerque,et al.  POSTMATING REPRODUCTIVE ISOLATION BETWEEN CHRYSOPA QUADRIPUNCTATA AND CHRYSOPA SLOSSONAE: MECHANISMS AND GEOGRAPHIC VARIATION , 1996, Evolution; international journal of organic evolution.

[19]  K. Dettner,et al.  CHEMICAL MIMICRY AND CAMOUFLAGE , 1994 .

[20]  S. Lahav,et al.  Segregation of Colony Odor in the Desert Ant Cataglyphis niger , 2001, Journal of Chemical Ecology.

[21]  R. Yamaoka,et al.  Chemical camouflage of myrmecophilous cricket Myrmecophilus sp. to be integrated with several ant species , 1996 .

[22]  T. Eisner,et al.  "Wolf-in-Sheep's-Clothing" Strategy of a Predaceous Insect Larva , 1978, Science.

[23]  Deborah M. Gordon,et al.  Task-Related Differences in the Cuticular Hydrocarbon Composition of Harvester Ants, Pogonomyrmex barbatus , 1998, Journal of Chemical Ecology.

[24]  G. S. Albuquerque,et al.  Life-history adaptations and reproductive costs associated with specialization in predacious insects , 1997 .

[25]  H. Sadeghi,et al.  Aphid suitability and its relationship to oviposition preference in predatory hoverflies. , 2000, The Journal of animal ecology.

[26]  W. Völkl,et al.  Interactions between ants attendingAphis fabae ssp.cirsiiacanthoidis on thistles and foraging parasitoid wasps , 1993, Journal of Insect Behavior.

[27]  D. Nelson,et al.  Normal and branched alkanes from cast skins of the grasshopper Schistocerca vaga (Scudder). , 1975, Journal of lipid research.

[28]  M. Elgar,et al.  Predatory spider mimics acquire colony-specific cuticular hydrocarbons from their ant model prey , 2004, Naturwissenschaften.

[29]  R. Akre,et al.  Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). , 1990 .

[30]  X. Cerdá,et al.  Trophallaxis Mediates Uniformity of Colony Odor in Cataglyphis iberica Ants (Hymenoptera, Formicidae) , 1999, Journal of Insect Behavior.

[31]  S. Lahav,et al.  Direct Behavioral Evidence for Hydrocarbons as Ant Recognition Discriminators , 1999, Naturwissenschaften.

[32]  R. Yamaoka,et al.  Chemical mimicry in the root aphid parasitoid Paralipsis eikoae Yasumatsu (Hymenoptera: Aphidiidae) of the aphid-attending ant Lasius sakagamii Yamauchi & Hayashida (Hymenoptera: Formicidae) , 1998, CHEMOECOLOGY.

[33]  H. Sadeghi,et al.  The effect of egg load and host deprivation on oviposition behaviour in aphidophagous hoverflies , 2000 .

[34]  D. Liang,et al.  “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile , 2000, Naturwissenschaften.

[35]  B. Hölldobler,et al.  Anonymity and specificity in the chemical communication signals of social insects , 1987, Journal of Comparative Physiology A.

[36]  Charles E. McCulloch,et al.  MULTIVARIATE ANALYSIS IN ECOLOGY AND SYSTEMATICS: PANACEA OR PANDORA'S BOX? , 1990 .

[37]  R. Matthews,et al.  Ants. , 1898, Science.

[38]  M. Way Mutualism Between Ants and Honeydew-Producing Homoptera , 1963 .

[39]  K. Dettner,et al.  Role of cuticular hydrocarbons of aphid parasitoids in their relationship to aphid-attending ants , 1996, Journal of Chemical Ecology.

[40]  R. Yamaoka,et al.  CHEMICAL MIMICRY BETWEEN PARASITIC ANTS OF THE GENUS FORMICOXENUS AND THEIR HOST MYRMICA (HYMENOPTERA, FORMICIDAE) , 1997 .

[41]  S. Leather Aphids on the world's trees: An identification and information guide: By R. L. Blackman and V. F. Eastop. Hardback (987 pp; £99.00). Wallingford, CAB International , 1996 .

[42]  D. Wojcik,et al.  Chemical Mimicry in the Myrmecophilous Beetle Myrmecaphodius excavaticollis , 1982, Science.

[43]  Melissa L. Thomas,et al.  Geographic Affinity, Cuticular Hydrocarbons and Colony Recognition in the Australian Meat Ant Iridomyrmex purpureus , 1999, Naturwissenschaften.

[44]  W. Völkl Behavioral and morphological adaptations of the coccinellid,Platynaspis luteorubra for exploiting ant-attended resources (Coleoptera: Coccinellidae) , 1995, Journal of Insect Behavior.

[45]  R. Boulay,et al.  Camponotus fellah colony integration: worker individuality necessitates frequent hydrocarbon exchanges , 2000, Animal Behaviour.

[46]  L. L. Jackson,et al.  Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper Melanoplus sanguinipes , 1973 .

[47]  J. Clément,et al.  Functional subcaste discrimination (foragers and brood-tenders) in the antCamponotus vagus scop.: polymorphism of cuticular hydrocarbon patterns , 1993, Journal of Chemical Ecology.

[48]  Kenneth H. Lockey Lipids of the insect cuticle: origin, composition and function , 1988 .

[49]  J. Mathew Aphytophagy in the Miletinae (Lycaenidae): Phylogeny, Ecology, and Conservation , 2003 .

[50]  G. S. Albuquerque,et al.  Evolution of prey specificity via three steps , 1993, Experientia.