Logit models and logistic regressions for social networks: III. Valued relations

This paper generalizes thep* model for dichotomous social network data (Wasserman & Pattison, 1996) to the polytomous case. The generalization is achieved by transforming valued social networks into three-way binary arrays. This data transformation requires a modification of the Hammersley-Clifford theorem that underpins thep* class of models. We demonstrate that, provided that certain (non-observed) data patterns are excluded from consideration, a suitable version of the theorem can be developed. We also show that the approach amounts to a model for multiple logits derived from a pseudo-likelihood function. Estimation within this model is analogous to the separate fitting of multinomial baseline logits, except that the Hammersley-Clifford theorem requires the equating of certain parameters across logits. The paper describes how to convert a valued network into a data array suitable for fitting the model and provides some illustrative empirical examples.

[1]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[2]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[3]  J. Besag Nearest‐Neighbour Systems and the Auto‐Logistic Model for Binary Data , 1972 .

[4]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[5]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[6]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[7]  R. Gray,et al.  Calculation of polychotomous logistic regression parameters using individualized regressions , 1984 .

[8]  S Wasserman,et al.  Statistical analysis of discrete relational data. , 1986, The British journal of mathematical and statistical psychology.

[9]  E. Johnsen Structure and process: agreement models for friendship formation , 1986 .

[10]  S. Wasserman Conformity of two sociometric relations , 1987 .

[11]  J. Besag,et al.  Generalized Monte Carlo significance tests , 1989 .

[12]  Stanley Wasserman,et al.  Correspondence and canonical analysis of relational data , 1990 .

[13]  M. J. Norušis,et al.  SPSS advanced statistics user's guide , 1990 .

[14]  D. J. Strauss,et al.  Pseudolikelihood Estimation for Social Networks , 1990 .

[15]  A. Agresti,et al.  Categorical Data Analysis , 1991, International Encyclopedia of Statistical Science.

[16]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[17]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[18]  D. J. Strauss,et al.  The Many Faces of Logistic Regression , 1992 .

[19]  H. Preisler,et al.  Modelling Spatial Patterns of Trees Attacked by Bark-beetles , 1993 .

[20]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[21]  Stanley Wasserman,et al.  Log-Multiplicative Models for Valued Social Relations , 1995 .

[22]  Janice Langan-Fox,et al.  Group effectiveness : a comparative network analysis of interactional structure and group performance in organizational workgroups , 1995 .

[23]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp , 1996 .

[24]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[25]  G. Robins,et al.  Personal attributes in inter-personal contexts: statistical models for individual characteristics and social relationships , 1998 .

[26]  S. Wasserman,et al.  Logit models and logistic regressions for social networks: II. Multivariate relations. , 1999, The British journal of mathematical and statistical psychology.

[27]  Carolyn J. Anderson,et al.  A p* primer: logit models for social networks , 1999, Soc. Networks.