Eurographics Symposium on Geometry Processing 2011 Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence

We present a dense correspondence method for isometric shapes, which is accurate yet computationally efficient. We minimize the isometric distortion directly in the 3D Euclidean space, i.e., in the domain where isometry is originally defined, by using a coarse‐to‐fine sampling and combinatorial matching algorithm. Our method does not require any initialization and aims to find an accurate solution in the minimum‐distortion sense for perfectly isometric shapes. We demonstrate the performance of our method on various isometric (or nearly isometric) pairs of shapes.

[1]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[2]  Marc Alexa,et al.  Recent Advances in Mesh Morphing , 2002, Comput. Graph. Forum.

[3]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Jovan Popovic,et al.  Continuous capture of skin deformation , 2003, ACM Trans. Graph..

[5]  Jovan Popović,et al.  Deformation transfer for triangle meshes , 2004, SIGGRAPH 2004.

[6]  Guillermo Sapiro,et al.  Comparing point clouds , 2004, SGP '04.

[7]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[8]  Thomas A. Funkhouser,et al.  Partial matching of 3D shapes with priority-driven search , 2006, SGP '06.

[9]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Alexander M. Bronstein,et al.  Efficient Computation of Isometry-Invariant Distances Between Surfaces , 2006, SIAM J. Sci. Comput..

[11]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[12]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[13]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[15]  Thomas Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, SIGGRAPH 2009.

[16]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[17]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[18]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Daniel Cohen-Or,et al.  Electors Voting for Fast Automatic Shape Correspondence , 2010, Comput. Graph. Forum.

[21]  Nikos Paragios,et al.  Dense non-rigid surface registration using high-order graph matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Yücel Yemez,et al.  3D Shape correspondence by isometry-driven greedy optimization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[24]  Radu Horaud,et al.  Shape matching based on diffusion embedding and on mutual isometric consistency , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[25]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[26]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.