Separable-denominator state-space realization of two-dimensional filters using a canonic form

In this paper a procedure is developed for the computation of a state-space realization of a two-dimensional filter. The transfer function of this realization has a separable denominator. The procedure relies on a canonic form for the state-space realization and utilizes a finite sequence of two-dimensional pulse response coefficients (Markov parameters).

[1]  Bostjan Vilfan Another Proof of the Two-Dimensional Cayley-Hamilton Theorem , 1973, IEEE Transactions on Computers.

[2]  R. Eising,et al.  Realization and stabilization of 2-d systems , 1978 .

[3]  A. Tether Construction of minimal linear state-variable models from finite input-output data , 1970 .

[4]  R. Gupta,et al.  An explicit approach to minimal realization from system Markov parameters , 1973 .

[5]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[6]  M. Morf,et al.  New results in 2-D systems theory, part II: 2-D state-space models—Realization and the notions of controllability, observability, and minimality , 1977, Proceedings of the IEEE.

[7]  R. Gupta,et al.  System realization from inexact Markov parameters , 1974 .

[8]  T. Bullock,et al.  Minimal partial realizations in a canonical form , 1975 .

[9]  G. Marchesini,et al.  State-space realization theory of two-dimensional filters , 1976 .

[10]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[11]  Donald D. Givone,et al.  Multidimensional Linear Iterative Circuits - General Properties , 1972, IEEE Trans. Computers.

[12]  Azriel Rosenfeld,et al.  Picture Processing by Computer , 1969, CSUR.

[13]  Sanjit K. Mitra,et al.  Computer-aided design of separable two-dimensional digital filters , 1977 .

[14]  Β. L. HO,et al.  Editorial: Effective construction of linear state-variable models from input/output functions , 1966 .