Towards flexible wireless charging for medical implants using distributed antenna system

This paper presents the design, implementation and evaluation of In-N-Out, a software-hardware solution for far-field wireless power transfer. In-N-Out can continuously charge a medical implant residing in deep tissues at near-optimal beamforming power, even when the implant moves around inside the human body. To accomplish this, we exploit the unique energy ball pattern of distributed antenna array and devise a backscatter-assisted beamforming algorithm that can concentrate RF energy on a tiny spot surrounding the medical implant. Meanwhile, the power levels on other body parts stay in low level, reducing the risk of overheating. We proto-type In-N-Out on 21 software-defined radios and a printed circuit board (PCB). Extensive experiments demonstrate that In-N-Out achieves 0.37 mW average charging power inside a 10 cm-thick pork belly, which is sufficient to wirelessly power a range of commercial medical devices. Our head-to-head comparison with the state-of-the-art approach shows that In-N-Out achieves 5.4X-18.1X power gain when the implant is stationary, and 5.3X-7.4X power gain when the implant is in motion.

[1]  Fadel Adib,et al.  Enabling deep-tissue networking for miniature medical devices , 2018, SIGCOMM.

[2]  I. Dove,et al.  Analysis of Radio Propagation Inside the HumanBody for in-Body Localization Purposes , 2014 .

[3]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[4]  Gianluca Lazzi,et al.  On the Design of Efficient Multi-Coil Telemetry System for Biomedical Implants , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Tommaso Melodia,et al.  U-Wear: Software-Defined Ultrasonic Networking for Wearable Devices , 2015, MobiSys.

[6]  M. Armand,et al.  Building better batteries , 2008, Nature.

[7]  Henning Hartmann,et al.  Backscatter Beamforming: A Transponder for Novel MIMO RFID Transmission Schemes , 2018, IEEE Journal of Radio Frequency Identification.

[8]  A. Kiourti,et al.  A Review of Implantable Patch Antennas for Biomedical Telemetry: Challenges and Solutions [Wireless Corner] , 2012, IEEE Antennas and Propagation Magazine.

[9]  Robert Puers,et al.  An inductive power link for a wireless endoscope. , 2007, Biosensors & bioelectronics.

[10]  Joshua R. Smith,et al.  Powering the next billion devices with wi-fi , 2015, CoNEXT.

[11]  Yanyong Zhang,et al.  Enabling Concurrent IoT Transmissions in Distributed C-RAN , 2018, SenSys.

[12]  Hung Cao,et al.  Power Approaches for Implantable Medical Devices , 2015, Sensors.

[13]  Swarun Kumar,et al.  Pushing the Range Limits of Commercial Passive RFIDs , 2019, NSDI.

[14]  Shahriar Mirabbasi,et al.  Design and Optimization of Resonance-Based Efficient Wireless Power Delivery Systems for Biomedical Implants , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[15]  M. Yousof Naderi,et al.  WiFED: WiFi Friendly Energy Delivery with Distributed Beamforming , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[16]  Mohammad Rostami,et al.  Enabling Practical Backscatter Communication for On-body Sensors , 2016, SIGCOMM.

[17]  Sidharth Kumar,et al.  Capttery: Scalable Battery-like Room-level Wireless Power , 2019, MobiSys.

[18]  Kevin Fu,et al.  Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[19]  Shaoqiu Xiao,et al.  Design and Safety Considerations of an Implantable Rectenna for Far-Field Wireless Power Transfer , 2014, IEEE Transactions on Antennas and Propagation.

[20]  Venkateswara Sarma Mallela,et al.  Technical Series Trends in Cardiac Pacemaker Batteries , 2004 .

[21]  Unsoo Ha,et al.  Learning Food Quality and Safety from Wireless Stickers , 2018, HotNets.

[22]  Rosa Maria Alsina Pages,et al.  Narrowband and Wideband Channel Sounding of an Antarctica to Spain Ionospheric Radio Link , 2015, Remote. Sens..

[23]  J A Hoffer,et al.  Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort , 2008, Science.

[24]  Santa Barbara,et al.  Energy efficient wireless communication using distributed beamforming , 2007 .

[25]  Tamotsu Katane,et al.  Power and Interactive Information Transmission to Implanted Medical Device Using Ultrasonic , 2002 .

[26]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[27]  Shyamnath Gollakota,et al.  Living IoT: A Flying Wireless Platform on Live Insects , 2018, MobiCom.

[28]  ダーリー、イアン,et al.  Implantable medical devices , 2006 .

[29]  T. Meng,et al.  Optimal Frequency for Wireless Power Transmission Into Dispersive Tissue , 2010, IEEE Transactions on Antennas and Propagation.

[30]  N. Cohen,et al.  Cochlear Implants , 2000 .

[31]  V. S. Mallela,et al.  Trends in Cardiac Pacemaker Batteries , 2004, Indian pacing and electrophysiology journal.

[32]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[33]  William C. Brown,et al.  Experimental Airborne Microwave Supported Platform , 1965 .

[34]  Maysam Ghovanloo,et al.  Design and Optimization of a 3-Coil Inductive Link for Efficient Wireless Power Transmission , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[35]  Y. Rahmat-Samii,et al.  Implanted antennas inside a human body: simulations, designs, and characterizations , 2004, IEEE Transactions on Microwave Theory and Techniques.

[36]  Z. Popovic,et al.  Low-Power Wireless Power Delivery , 2012, IEEE Transactions on Microwave Theory and Techniques.

[37]  Sudipto Chakraborty,et al.  Fully Wireless Implantable Cardiovascular Pressure Monitor Integrated with a Medical Stent , 2010, IEEE Transactions on Biomedical Engineering.

[38]  Chee Wee Kim,et al.  RF transmission power loss variation with abdominal tissues thicknesses for ingestible source , 2011, 2011 IEEE 13th International Conference on e-Health Networking, Applications and Services.

[39]  A. Surowiec,et al.  In vitro dielectric properties of human tissues at radiofrequencies. , 1987, Physics in medicine and biology.

[40]  Arka Majumdar,et al.  Charging a Smartphone Across a Room Using Lasers , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[41]  Mohammad Rostami,et al.  Braidio: An Integrated Active-Passive Radio for Mobile Devices with Asymmetric Energy Budgets , 2016, SIGCOMM.

[42]  M. Soljačić,et al.  Wireless Power Transfer via Strongly Coupled Magnetic Resonances , 2007, Science.

[43]  Dina Katabi,et al.  Magnetic MIMO: how to charge your phone in your pocket , 2014, MobiCom.

[44]  Raghuraman Mudumbai,et al.  Scalable feedback control for distributed beamforming in sensor networks , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[45]  Zhu Han,et al.  Secret-Focus: A Practical Physical Layer Secret Communication System by Perturbing Focused Phases in Distributed Beamforming , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications.

[46]  Joshua R. Smith,et al.  LoRa Backscatter: Enabling The Vision of Ubiquitous Connectivity , 2017 .

[47]  D. Katabi,et al.  JMB: scaling wireless capacity with user demands , 2012, CCRV.

[48]  Ali Najafi,et al.  NetScatter: Enabling Large-Scale Backscatter Networks , 2018, NSDI.

[49]  Fadel Adib,et al.  Minding the Billions: Ultra-wideband Localization for Deployed RFID Tags , 2017, MobiCom.

[50]  Ju Wang,et al.  TagScan: Simultaneous Target Imaging and Material Identification with Commodity RFID Devices , 2017, MobiCom.

[51]  Anantha Chandrakasan,et al.  Caraoke: An E-Toll Transponder Network for Smart Cities , 2015, Comput. Commun. Rev..

[52]  M. Soljačić,et al.  Efficient wireless non-radiative mid-range energy transfer , 2006, physics/0611063.

[53]  Longfei Shangguan,et al.  The Design and Implementation of a Mobile RFID Tag Sorting Robot , 2016, MobiSys.

[54]  J. S. Ho,et al.  Wireless power transfer to a cardiac implant , 2012 .

[55]  Amin Arbabian,et al.  Sound Technologies, Sound Bodies: Medical Implants with Ultrasonic Links , 2016, IEEE Microwave Magazine.

[56]  Emrecan Demirors,et al.  U-Verse: a miniaturized platform for end-to-end closed-loop implantable internet of medical things systems , 2019, SenSys.

[57]  Fadel Adib,et al.  Drone Relays for Battery-Free Networks , 2017, SIGCOMM.

[58]  Hyouk-Kyu Cha,et al.  A CMOS Rectifier With a Cross-Coupled Latched Comparator for Wireless Power Transfer in Biomedical Applications , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[59]  Saad Mutashar,et al.  Energy harvesting for the implantable biomedical devices: issues and challenges , 2014, Biomedical engineering online.

[60]  Yuji Tanabe,et al.  Wireless power transfer to deep-tissue microimplants , 2014, Proceedings of the National Academy of Sciences.

[61]  Maysam Ghovanloo,et al.  Design and Optimization of Printed Spiral Coils for Efficient Transcutaneous Inductive Power Transmission , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[62]  Babak Ziaie,et al.  An Ultrasonically Powered Implantable Micro-Oxygen Generator (IMOG) , 2011, IEEE Transactions on Biomedical Engineering.

[63]  Ezzeldin Hamed,et al.  Chorus: truly distributed distributed-MIMO , 2018, SIGCOMM.

[64]  K. Ramchandran,et al.  Distributed Beamforming using 1 Bit Feedback : from Concept to Realization , 2006 .

[65]  Dario Farina,et al.  Characterization of In-Body to On-Body Wireless Radio Frequency Link for Upper Limb Prostheses , 2016, PloS one.

[66]  Omid Salehi-Abari,et al.  In-body backscatter communication and localization , 2018, SIGCOMM.

[67]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[68]  Mahdi Rasouli,et al.  Energy sources and their development for application in medical devices , 2010, Expert review of medical devices.

[69]  Xiaojiang Chen,et al.  PLoRa: a passive long-range data network from ambient LoRa transmissions , 2018, SIGCOMM.

[70]  G. Enrico Santagati,et al.  A 700 kHz ultrasonic link for wireless powering of implantable medical devices , 2016, 2016 IEEE SENSORS.

[71]  Xiaoran Fan,et al.  Facilitating the Deployment of Next Billion IoT Devices with Distributed Antenna Systems , 2019, The ACM MobiSys 2019 on Rising Stars Forum - RisingStarsForum'19.

[72]  Tommaso Melodia,et al.  An implantable low-power ultrasonic platform for the Internet of Medical Things , 2017, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.

[73]  Mehmet Kayrak,et al.  Common Pacemaker Problems: Lead and Pocket Complications , 2011 .

[74]  Joshua R. Smith,et al.  PASSIVE WI-FI: Bringing Low Power to Wi-Fi Transmissions , 2016, GETMBL.

[75]  M. S. Reynolds,et al.  Wireless power transfer optimization for nonlinear passive backscatter devices , 2013, 2013 IEEE International Conference on RFID (RFID).