A Mumford-Shah-Like Method for Limited Data Tomography with an Application to Electron Tomography

In this article the Mumford-Shah-like method of [R. Ramlau and W. Ring, J. Comput. Phys., 221 (2007), pp. 539-557] for complete tomographic data is generalized and applied to limited angle and region of interest tomography data. With the Mumford-Shah-like method, one reconstructs a piecewise constant function and simultaneously a segmentation from its (complete) Radon transform data. For limited data, the ability of the Mumford-Shah-like method to find a segmentation, and by that the singularity set of a function, is exploited. The method is applied to generated data from a torso phantom. The results demonstrate the performance of the method in reconstructing the singularity set, the density distribution itself for limited angle data, and also some quantitative information about the density distribution for region of interest data. As a second example limited angle region of interest tomography is considered as a simplified model for electron tomography (ET). For this problem we combine Lambda tomography and the Mumford-Shah-like method. The combined method is applied to simulated ET data.

[1]  Erik L. Ritman,et al.  High-resolution computed tomography from efficient sampling , 2000 .

[2]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[3]  E. T. Quinto,et al.  Local Tomography in Electron Microscopy , 2008, SIAM J. Appl. Math..

[4]  Akbar H. Begmatov,et al.  Inversion of the X-ray transform the , 2000 .

[5]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[6]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[7]  Ville Kolehmainen,et al.  Limited Data X-Ray Tomography Using Nonlinear Evolution Equations , 2008, SIAM J. Sci. Comput..

[8]  Eric Todd Quinto,et al.  Electron lambda-tomography , 2009, Proceedings of the National Academy of Sciences.

[9]  W. Clem Karl,et al.  A curve evolution approach to object-based tomographic reconstruction , 2003, IEEE Trans. Image Process..

[10]  A. Louis Inverse und schlecht gestellte Probleme , 1989 .

[11]  B. F. Logan,et al.  The Fourier reconstruction of a head section , 1974 .

[12]  L. Vese,et al.  A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[13]  M. Defrise,et al.  Solving the interior problem of computed tomography using a priori knowledge , 2008, Inverse problems.

[14]  Kennan T. Smith,et al.  Mathematical foundations of computed tomography. , 1985, Applied optics.

[15]  Hengyong Yu,et al.  A General Total Variation Minimization Theorem for Compressed Sensing Based Interior Tomography , 2009, Int. J. Biomed. Imaging.

[16]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[17]  R. Hegerl,et al.  Three-Dimensional Structure Determination by Electron Microscopy (Nonperiodic Specimens) , 1980 .

[18]  G. N. Ramachandran,et al.  Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Frank Natterer,et al.  Mathematical methods in image reconstruction , 2001, SIAM monographs on mathematical modeling and computation.

[20]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[21]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[22]  Ozan Öktem Reconstruction methods in electron tomography , 2008 .

[23]  Benoit Hamelin,et al.  Design of iterative ROI transmission tomography reconstruction procedures and image quality analysis. , 2010, Medical physics.

[24]  M. Defrise,et al.  Tiny a priori knowledge solves the interior problem , 2007 .

[25]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[26]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[27]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[28]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[29]  R. Fahrig,et al.  Simultaneous segmentation and reconstruction: a level set method approach for limited view computed tomography. , 2010, Medical physics.

[30]  Adel Faridani,et al.  Introduction to the Mathematics of Computed Tomography , 2003 .

[31]  Peter B. Noël,et al.  Toward region of interest computer tomography , 2009, Medical Imaging.

[32]  Ronny Ramlau,et al.  A Mumford-Shah level-set approach for the inversion and segmentation of X-ray tomography data , 2007, J. Comput. Phys..

[33]  S Rudin,et al.  Region of interest (ROI) computed tomography , 2004, SPIE Medical Imaging.

[34]  R. Ramlau,et al.  A Mumford-Shah level-set approach for the inversion andsegmentation of SPECT/CT data , 2011 .

[35]  Michael Hintermüller,et al.  A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..

[36]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[37]  J. Kruskal,et al.  COMPUTERIZED TOMOGRAPHY: THE NEW MEDICAL X-RAY TECHNOLOGY , 1978 .

[38]  E. T. Quinto,et al.  An Introduction to X-ray tomography and Radon Transforms , 2006 .

[39]  Duccio Fanelli,et al.  Electron tomography: a short overview with an emphasis on the absorption potential model for the forward problem , 2008 .

[40]  David V. Finch CONE BEAM RECONSTRUCTION WITH SOURCES ON A CURVE , 1985 .

[41]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[42]  R. Gardner,et al.  Geometric reconstruction methods for electron tomography. , 2012, Ultramicroscopy.

[43]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[44]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies , 2006 .

[45]  Hengyong Yu,et al.  Compressed sensing based interior tomography , 2009, Physics in medicine and biology.

[46]  Hengyong Yu,et al.  A General Local Reconstruction Approach Based on a Truncated Hilbert Transform , 2007, Int. J. Biomed. Imaging.

[47]  Erik L. Ritman,et al.  Local tomography , 1992 .

[48]  Michael Hintermüller,et al.  An Inexact Newton-CG-Type Active Contour Approach for the Minimization of the Mumford-Shah Functional , 2004, Journal of Mathematical Imaging and Vision.