Mn doping-induced semiconducting behavior in the perovskite molybdates SrMo1−xMnxO3(0 x 0.20)

The effect of Mn doping on structural, magnetic, electronic transport, and specific heat properties in 4d perovskites SrMo1−xMnxO3(0≤x≤0.20) has been investigated. The Mn doping at the Mo site does not change the space group of the samples, but increases the structural parameter a monotonically. All Mn-doped samples show Curie-Weiss paramagnetic behaviors due to the appearance of localized moment, and the magnetic susceptibility χ increases with increasing the Mn-doping content. Samples (x≥0.03) exhibit semiconducting transport behavior, while x=0.01 shows a metallic behavior with an upturn below T1. The magnitude of resistivity monotonically increases with increasing Mn-doping content. The evolution of the resistive properties is discussed according to the competition among Kondo scattering, electron-electron interaction, and the disorder effect. In addition, the electron-electron interaction intensity increases with the increasing of Mn-doping content according to the study of specific heat properties.

[1]  S. Zhang,et al.  Influence of La doping on the properties of molybdenum perovskite Sr1–x Lax MoO3 (0 ≤ x ≤ 0.2) , 2006 .

[2]  Y. Sun,et al.  Disorder induced ferromagnetism in the Cu-doped molybdate SrMo1−xCuxO3 (0≤x≤0.20) , 2006 .

[3]  Wenli Song,et al.  Influence of Pr-doping on structural, electronic transport, magnetic properties of perovskite molybdates Sr1-xPrxMoO3 (0≤x≤0.15) , 2006 .

[4]  Yan Xu,et al.  Low temperature transport behavior and Kondo scattering in dilute Mn-doped NaγCo1−xMnxO2 , 2006 .

[5]  Yan Xu,et al.  Kondo-like transport and its correlation with the spin-glass phase in perovskite manganites , 2005 .

[6]  S. Ikeda,et al.  Highest conductivity oxide SrMoO3 grown by a floating-zone method under ultralow oxygen partial pressure , 2005 .

[7]  M. S. Hegde,et al.  The effect of strain on nonlinear temperature dependence of resistivity in SrMoO3 and SrMoO3−xNx films , 2005 .

[8]  Zhang Shuyi,et al.  Insulator–Metal Transition due to La Doping in Double Perovskite Sr2MnMoO6 , 2004 .

[9]  J. Stalick,et al.  Electronic Structure of Sr2MoO4 , 2003 .

[10]  J. S. Lee,et al.  Non-Fermi liquid behavior and scaling of the low-frequency suppression in the optical conductivity spectra of CaRuO 3 , 2002, cond-mat/0205526.

[11]  J. S. Lee,et al.  Pseudogap formation in four-layer BaRuO 3 and its electrodynamic response changes , 2001, cond-mat/0107625.

[12]  J. S. Lee,et al.  Pseudogap formation in 4d transition metal oxide BaRuO3 , 2001 .

[13]  Y. Nishihara,et al.  Iron spin state of double perovskite oxide Sr2FeWO6 , 2000 .

[14]  Y. Nishihara,et al.  Electronic state of Fe in double perovskite oxide Sr2FeWO6 , 1999 .

[15]  V. Venugopal,et al.  Calorimetric investigations of SrMoO3 and BaMoO3 compounds , 1999 .

[16]  M. Lees,et al.  Specific heat ofPr0.6(Ca1−xSrx)0.4MnO3(0<~x<~1) , 1999 .

[17]  Y. Maeno,et al.  Spin-triplet superconductivity in Sr2RuO4 identified by 17O Knight shift , 1998, Nature.

[18]  M. Itoh,et al.  Valency pair and properties of 1:1 ordered perovskite-type compounds Sr2MMoO6 (M = Mn,Fe,Co) , 1996 .

[19]  R. Young,et al.  A new computer program for Rietveld analysis of X-ray powder diffraction patterns , 1981 .

[20]  A. Sleight,et al.  Magnetic and electrical properties of Ba2MReO6 ordered perovskites , 1972 .

[21]  S. Nomura,et al.  Electrical Properties and Mssbauer Effect in the System Sr2(FeMoxW1-x)O6 , 1969 .

[22]  M. Sienko,et al.  Magnetic susceptibility of barium molybdate(IV) and strontium molybdate(IV) in the range 2-300.degree.K , 1968 .

[23]  J. Goodenough Covalency Criterion for Localized vs Collective Electrons in Oxides with the Perovskite Structure , 1966 .

[24]  G. Blasse NEW COMPOUNDS WITH PEROVSKITE-LIKE STRUCTURES , 1965 .