Directed paths: from Ramsey to Ruzsa and Szemerédi

Starting from an innocent Ramsey-theoretic question regarding directed paths in tournaments, we discover a series of rich and surprising connections that lead into the theory around a fundamental problem in Combinatorics: the Ruzsa-Szemer\'edi induced matching problem. Using these relationships, we prove that every coloring of the edges of the transitive $n$-vertex tournament using three colors contains a directed path of length at least $\sqrt{n} \cdot e^{\log^* n}$ which entirely avoids some color. We also expose connections to a family of constructions for Ramsey tournaments, and introduce and resolve some natural generalizations of the Ruzsa-Szemer\'edi problem which we encounter through our investigation.

[1]  B. Roy Nombre chromatique et plus longs chemins d'un graphe , 1967 .

[2]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.

[3]  J. Spencer Ramsey Theory , 1990 .

[4]  Endre Szemerédi,et al.  Three-color Ramsey numbers for paths , 2008, Comb..

[5]  Vasek Chvátal,et al.  Tree-complete graph ramsey numbers , 1977, J. Graph Theory.

[6]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[7]  M. Hasse Zur algebraischen Begrndung der Graphentheorie. III , 1965 .

[8]  Tomasz Luczak,et al.  The Ramsey number for a triple of long even cycles , 2007, J. Comb. Theory, Ser. B.

[9]  Vojtech Rödl,et al.  On graphs with linear Ramsey numbers , 2000, J. Graph Theory.

[10]  David C. Mcgarvey A THEOREMI ON THE CONSTRUCTION OF VOTING PARADOXES , 1953 .

[11]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[12]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[13]  David Conlon,et al.  Ordered Ramsey numbers , 2014, J. Comb. Theory, Ser. B.

[14]  Douglas B. West,et al.  Acyclic Sets in k-Majority Tournaments , 2011, Electron. J. Comb..

[15]  N. Alon Monochromatic directed walks in arc-colored directed graphs , 1987 .

[16]  Noga Alon,et al.  Dominating sets in k-majority tournaments , 2006, J. Comb. Theory, Ser. B.

[17]  Kenneth Kalmanson,et al.  On a Theorem of Erdös and Szekeres , 1973, J. Comb. Theory, Ser. A.

[18]  Gábor Tardos,et al.  A Multidimensional Generalization of the Erdős–Szekeres Lemma on Monotone Subsequences , 2001, Combinatorics, Probability and Computing.

[19]  András Gyárfás,et al.  A Ramsey-type problem in directed and bipartite graphs , 1973 .

[20]  Vašek Chvátal,et al.  Monochromatic paths in edge-colored graphs , 1972 .

[21]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[22]  Michael Elkin An improved construction of progression-free sets , 2010, SODA '10.

[23]  B. Sudakov,et al.  Erdős–Szekeres‐type theorems for monotone paths and convex bodies , 2011, 1105.2097.

[24]  Edy Tri Baskoro,et al.  On Ramsey-Type Problems , 2009 .

[25]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[26]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[27]  Asaf Shapira,et al.  Ramsey Theory, integer partitions and a new proof of the Erdős–Szekeres Theorem , 2012, 1206.4001.

[28]  S. Burr ON THE MAGNITUDE OF GENERALIZED RAMSEY NUMBERS FOR GRAPHS , 1973 .

[29]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Michael Steele,et al.  Variations on the Monotone Subsequence Theme of Erdös and Szekeres , 1995 .