O. A Primer of Complete Lattices.- 1. Generalities and notation.- 2. Complete lattices.- 3. Galois connections.- 4. Meet-continuous lattices.- I. Lattice Theory of Continuous Lattices.- 1. The "way-below" relation.- 2. The equational characterization.- 3. Irreducible elements.- 4. Algebraic lattices.- II. Topology of Continuous Lattices: The Scott Topology.- 1. The Scott topology.- 2. Scott-continuous functions.- 3. Injective spaces.- 4. Function spaces.- III. Topology of Continuous Lattices: The Lawson Topology.- 1. The Lawson topology.- 2. Meet-continuous lattices revisited.- 3. Lim-inf convergence.- 4. Bases and weights.- IV. Morphisms and Functors.- 1. Duality theory.- 2. Morphisms into chains.- 3. Projective limits and functors which preserve them.- 4. Fixed point construction for functors.- V. Spectral Theory of Continuous Lattices.- 1. The Lemma.- 2. Order generation and topological generation.- 3. Weak irreducibles and weakly prime elements.- 4. Sober spaces and complete lattices.- 5. Duality for continuous Heyting algebras.- VI. Compact Posets and Semilattices.- 1. Pospaces and topological semilattices.- 2. Compact topological semilattices.- 3. The fundamental theorem of compact semilattices.- 4. Some important examples.- 5. Chains in compact pospaces and semilattices.- VII. Topological Algebra and Lattice Theory: Applications.- 1. One-sided topological semilattices.- 2. Topological lattices.- 3. Compact pospaces and continuous Heyting algebras.- 4. Lattices with continuous Scott topology.- Listof Symbols.- List of Categories.