Ionized gas diagnostics from protoplanetary discs in the Orion nebula and the abundance discrepancy problem

We present results from integral field spectroscopy of a field located near the Trapezium Cluster using the Potsdam Multi-Aperture Spectrophotometer (PMAS). The observed field contains a variety of morphological structures: five externally ionized protoplanetary discs (also known as proplyds), the high-velocity jet HH 514 and a bowshock. Spatial distribution maps are obtained for different emission line fluxes, the c(Hβ) extinction coefficient, electron densities and temperatures, ionic abundances of different ions from collisionally excited lines (CELs), C 2+ and O 2+ abundances from recombination lines (RLs) and the abundance discrepancy factor of O 2+ , ADF(O 2+ ). We distinguish the three most prominent proplyds (177-341, 170337 and 170-334) and analyse their impact on the spatial distributions of the above mentioned quantities. We find that collisional de-excitation has a major influence on the line fluxes in the proplyds. If this is not properly accounted for then physical conditions deduced from commonly used line ratios will be in error, leading to unreliable chemical abundances for these objects. We obtain the intrinsic emission of the proplyds 177-341, 170-337 and 170-334 by a direct subtraction of the background emission, though the last two present some background contamination due to their small sizes. A detailed analysis of 177-341 spectra making use of suitable density diagnostics reveals the presence of high-density gas (3.8 × 10 5 cm −3 )i n contrast to the typical values observed in the background gas of the nebula (3800 cm −3 ). We also explore how the background subtraction could be affected by the possible opacity of the proplyd and its effect on the derivation of physical conditions and chemical abundances of the proplyd 177-341. We construct a physical model for the proplyd 177-341 finding a good agreement between the predicted and observed line ratios. Finally, we find that the use of reliable physical conditions returns an ADF(O 2+ ) about zero for the intrinsic spectra of 177-341, while the background emission presents the typical ADF(O 2+ ) observed in the Orion nebula (0.16 ± 0.11 dex). We conclude that the presence of high-density ionized gas is severely affecting the abundances determined from CELs and, therefore, those from RLs should be considered as a better approximation to the true abundances.

[1]  J. D. EVERETT,et al.  Atmospheric Refraction , 1873, Nature.

[2]  M. Peimbert Temperature Determinations of H II Regions , 1967 .

[3]  M. Peimbert,et al.  The Extinction Law in the Orion Nebula , 1970 .

[4]  W. Feibelman,et al.  The remarkable ultraviolet spectrum of the planetary nebula Abell 30 , 1984 .

[5]  M. Felli,et al.  Solar system-sized condensations in the Orion Nebula , 1987 .

[6]  J. Meaburn An extended high-speed flow from a compact, ionized knot in the Orion Nebula (M42) , 1988 .

[7]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[8]  R. Rubin The Effect of Density Variations on Elemental Abundance Ratios in Gaseous Nebulae , 1989 .

[9]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[10]  J. B. Oke Faint Spectrophotometric Standard Stars , 1990 .

[11]  J. Baldwin,et al.  Physical conditions in the Orion Nebula and an assessment of its helium abundance , 1991 .

[12]  J. Meaburn,et al.  Extensive, high-speed gas around the Trapezium cluster of the Orion nebula (M42, NGC 1976) , 1993 .

[13]  P. J. Storey,et al.  The O++/H+ abundance ratio in gaseous nebulae derived from recombination lines. , 1993 .

[14]  K A Berrington,et al.  Collision Strengths from a 29-State R-Matrix Calculation on Electron Excitation in Helium , 1993 .

[15]  J. Meaburn,et al.  High-speed, highly ionized jets, knots and loops in the Trapezium cluster of the Orion nebula (M42, NGC 1976) , 1993 .

[16]  Z. Wen,et al.  Discovery of new objects in the Orion nebula on HST images - Shocks, compact sources, and protoplanetary disks , 1993 .

[17]  S. Viegas,et al.  Density condensations in planetary nebulae and the electron temperature , 1994 .

[18]  Z. Wen,et al.  Postrefurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk , 1994 .

[19]  D. G. Hummer,et al.  Recombination line intensities for hydrogenic ions-IV. Total recombination coefficients and machine-readable tables for Z=1 to 8 , 1995 .

[20]  R. Shaw,et al.  SOFTWARE FOR THE ANALYSIS OF EMISSION LINE NEBULAE , 1995 .

[21]  J. Meaburn,et al.  The high-speed phenomena of the Orion nebula (M42, NGC 1976) – IV. Velocity imaging and spectroscopy , 1995 .

[22]  G. Ferland,et al.  Collisional Effects in He I: An Observational Analysis , 1995 .

[23]  Robert Q. Fugate,et al.  Photoevaporating stellar envelopes observed with Rayleigh beacon adaptive optics , 1995 .

[24]  P. Quinet Transition probabilities for forbidden lines of Fe III , 1996 .

[25]  C. O’Dell,et al.  Hubble Space Telescope Mapping of the Orion Nebula. I. A Survey of Stars and Compact Objects , 1996 .

[26]  Mark J. McCaughrean,et al.  Direct Imaging of Circumstellar Disks in the Orion Nebula , 1996 .

[27]  D. Soderblom Planets Beyond the Solar System and the Next Generation of Space Missions , 1997 .

[28]  C. Esteban,et al.  Chemical composition of the Orion nebula derived from echelle spectrophotometry , 1998 .

[29]  R. Sutherland,et al.  Externally Illuminated Young Stellar Environments in the Orion Nebula: Hubble Space Telescope Planetary Camera and Ultraviolet Observations , 1998 .

[30]  Rodger I. Thompson,et al.  2.12 Micron Molecular Hydrogen Emission from Circumstellar Disks Embedded in the Orion Nebula , 1998 .

[31]  C. O’Dell Observational Properties of the Orion Nebula Proplyds , 1998 .

[32]  S. Richter,et al.  The Ultracompact H II Region G5.97−1.17: An Evaporating Circumstellar Disk in M8 , 1998 .

[33]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[34]  J. Bally,et al.  Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula , 1998 .

[35]  D. Hollenbach,et al.  On the [O I] λ6300 Line Emission from the Photoevaporating Circumstellar Disks in the Orion Nebula , 1998 .

[36]  S. J. Arthur,et al.  Modeling the Brightness Profiles of the Orion Proplyds , 1998 .

[37]  W. J. Henney,et al.  A Keck High-Resolution Spectroscopic Study of the Orion Nebula Proplyds , 1999 .

[38]  E. Grebel,et al.  HST/WFPC2 and VLT/ISAAC Observations of Proplyds in the Giant H II Region NGC 3603 , 1999, astro-ph/9910074.

[39]  D. Hollenbach,et al.  Photodissociation Region Models of Photoevaporating Circumstellar Disks and Application to the Proplyds in Orion , 1999 .

[40]  Mark J. McCaughrean,et al.  Disks, Microjets, Windblown Bubbles, and Outflows in the Orion Nebula , 2000 .

[41]  M. Barlow,et al.  NGC 6153: a super-metal-rich planetary nebula? , 2000 .

[42]  C. O’Dell,et al.  High Angular Resolution Determination of Extinction in the Orion Nebula , 2000 .

[43]  Infrared L-Band Observations of the Trapezium Cluster: A Census of Circumstellar Disks and Candidate Protostars , 2000, astro-ph/0008280.

[44]  P. Storey,et al.  Recombination coefficients for CII lines , 2000 .

[45]  A. Pauldrach,et al.  Radiation-driven winds of hot luminous stars - XIII. A description of NLTE line blocking and blanketing towards realistic models for expanding atmospheres , 2001 .

[46]  S. J. Arthur,et al.  Hydrodynamic Simulations of Proplyd Bow Shocks , 2001 .

[47]  Ivan Hubeny,et al.  A Grid of Non-LTE Line-blanketed Model Atmospheres of O-Type Stars , 2002, astro-ph/0210157.

[48]  The Infrared Emission of Circumstellar Envelopes, Dark Silhouettes, and Photoionized Disks in H II Regions , 2002, astro-ph/0207567.

[49]  S. Viti,et al.  Molecular tracers of photo-evaporating disks around young stars , 2002 .

[50]  Astronomy,et al.  MERLIN Radio Detection of an Interaction Zone within a Binary Orion Proplyd System , 2002, astro-ph/0201087.

[51]  C. O’Dell,et al.  Mass Loss and Jet Outflow in the Orion Nebula Proplyd LV 2 , 2002 .

[52]  Radiative Transfer Effects in He I Emission Lines , 2002, astro-ph/0202227.

[53]  J. Baldwin,et al.  Temperature variations from Hubble Space Telescope spectroscopy of the Orion Nebula , 2002, astro-ph/0212244.

[54]  Bruce A. Macintosh,et al.  Keck near-infrared observations of the Orion proplyds: initial results , 2003, SPIE Astronomical Telescopes + Instrumentation.

[55]  Puragra Guhathakurta,et al.  Discoveries and Research Prospects from 6- to 10-Meter-Class Telescopes II , 2003 .

[56]  M. Barlow,et al.  Heavy elements in Galactic and Magellanic Cloud H ii regions: recombination‐line versus forbidden‐line abundances , 2002, astro-ph/0209534.

[57]  J. Bally,et al.  Numerous Proplyd Candidates in the Harsh Environment of the Carina Nebula , 2003 .

[58]  A reappraisal of the chemical composition of the Orion nebula based on Very Large Telescope echelle spectrophotometry , 2004, astro-ph/0408249.

[59]  Y. Tsamis,et al.  A photoionization-modelling study of 30 Doradus: the case for small-scale chemical inhomogeneity , 2005, astro-ph/0509463.

[60]  Thermal Dust Emission from Proplyds, Unresolved Disks, and Shocks in the Orion Nebula , 2005, astro-ph/0506445.

[61]  G. Ferland,et al.  Self-Consistent Dynamic Models of Steady Ionization Fronts. I. Weak-D and Weak-R Fronts , 2005, astro-ph/0501034.

[62]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[63]  G. Ferland,et al.  Theoretical He I Emissivities in the Case B Approximation , 2005, astro-ph/0502224.

[64]  Gemini Multi-Object Spectrograph Integral Field Unit Spectroscopy of the 167-317 (LV2) Proplyd in Orion* , 2005 .

[65]  Isaac Newton Group,et al.  Detailed spectroscopic analysis of the Trapezium cluster stars inside the Orion nebula. Rotational v , 2005, astro-ph/0510288.

[66]  T. Geballe,et al.  Hubble Space Telescope and United Kingdom Infrared Telescope Observations of the Center of the Trifid Nebula: Evidence for the Photoevaporation of a Proplyd and a Protostellar Condensation , 2005, astro-ph/0505155.

[67]  M. Bertero,et al.  The Orion Nebula in the Mid-Infrared , 2004, astro-ph/0412665.

[68]  J. Carpenter,et al.  Massive Protoplanetary Disks in the Trapezium Region , 2006, astro-ph/0601033.

[69]  S. Glover,et al.  Cloud Fragmentation and Proplyd-like Features in H II Regions Imaged by the Hubble Space Telescope , 2006, astro-ph/0602545.

[70]  N. Smith,et al.  Silicate Emission Profiles from Low-Mass Protostellar Disks in the Orion Nebula: Evidence for Growth and Thermal Processing of Grains , 2006, astro-ph/0605174.

[71]  C. Esteban,et al.  The abundance discrepancy problem in HII regions , 2006, astro-ph/0610903.

[72]  G. Stasińska,et al.  Enrichment of the interstellar medium by metal-rich droplets and the abundance bias in H II regions , 2007, 0706.1225.

[73]  R. Méndez,et al.  Planetary Nebulae in our Galaxy and Beyond , 2007 .

[74]  G. Ferland,et al.  He I Emission in the Orion Nebula and Implications for Primordial Helium Abundance , 2006, astro-ph/0611579.

[75]  J. Baldwin,et al.  Deviations from He I Case B Recombination Theory and Extinction Corrections in the Orion Nebula , 2006, astro-ph/0610621.

[76]  M. García-Díaz,et al.  VELOCITY STRUCTURE IN THE ORION NEBULA. I. SPECTRAL MAPPING IN LOW-IONIZATION LINES , 2006, astro-ph/0611417.

[77]  A. Eckart,et al.  Near-infrared polarization images of the Orion proplyds , 2008, 0805.0605.

[78]  Beijing,et al.  Integral field spectroscopy of planetary nebulae: mapping the line diagnostics and hydrogen-poor zones with VLT FLAMES , 2008, 0802.0774.

[79]  W. Henney,et al.  High Velocity Features in the Orion Nebula , 2008, 0807.4189.

[80]  Velocity Structure in the Orion Nebula: II. Emission line atlas of partially ionized to fully ionized gas , 2008, 0802.0518.

[81]  C. Esteban,et al.  Small-Scale Behavior of the Physical Conditions and the Abundance Discrepancy in the Orion Nebula , 2007, 0710.1285.

[82]  Massimo Robberto,et al.  THE HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS ATLAS OF PROTOPLANETARY DISKS IN THE GREAT ORION NEBULA , 2008 .

[83]  J. Carpenter,et al.  Proplyds and Massive Disks in the Orion Nebula Cluster Imaged with CARMA and SMA , 2008, 0803.3217.

[84]  Y. Tsamis Integral field spectroscopy of planetary nebulae and proplyds , 2008 .

[85]  C. Esteban,et al.  Properties of the ionized gas in HH 202 – I. Results from integral field spectroscopy with PMAS , 2008, 0812.3040.

[86]  J. García-Rojas,et al.  Faint recombination lines in Galactic PNe with a [WC]nucleus , 2008, 0812.3049.

[87]  Temperature Structure and Metallicity in H II Regions , 2009, 0912.0302.

[88]  N. Santos,et al.  Chemical abundances of 451 stars from the HARPS GTO planet search program - Thin disc, thick disc, and planets , 2009, 0902.3374.

[89]  J. Walsh,et al.  Chemical abundances in the protoplanetary disc LV 2 (Orion): clues to the causes of the abundance anomaly in H II regions , 2010, 1009.4783.

[90]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[91]  S. Roca-F brega,et al.  Revista Mexicana de Astronomia y Astrofisica Conference Series , 2011 .

[92]  Integral field spectroscopy of selected areas of the Bright bar and Orion-S cloud in the Orion nebula , 2011, 1106.3602.

[93]  A. Raga,et al.  3D numerical simulations of photodissociated and photoionized disks , 2011, 1102.3066.

[94]  J. Walsh,et al.  NGC 5128 - a nearby laboratory for planetary nebulae in a giant early-type galaxy , 2011, Proceedings of the International Astronomical Union.

[95]  J. Walsh,et al.  Chemical abundances in the protoplanetary disc LV 2 (Orion) – II. High‐dispersion VLT observations and microjet properties★ , 2011, 1107.1531.

[96]  大澤 亮 日本天文学会 早川幸男基金による渡航報告書 : IAU Symposium 283 : Planetary Nebulae, an Eye to the Future , 2011 .

[97]  G. Stasińska,et al.  The chemical composition of the Orion star forming region. II. Stars, gas, and dust: the abundance discrepancy conundrum , 2010, 1010.5903.

[98]  J. Drake,et al.  PHOTOEVAPORATING PROPLYD-LIKE OBJECTS IN CYGNUS OB2 , 2012, 1201.2404.