Robust memristors based on layered two-dimensional materials

[1]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[2]  Wei Lu,et al.  Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus , 2017, Science Advances.

[3]  R. Waser,et al.  Coexistence of Grain‐Boundaries‐Assisted Bipolar and Threshold Resistive Switching in Multilayer Hexagonal Boron Nitride , 2017 .

[4]  J. Yang,et al.  Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. , 2017, Nature materials.

[5]  Ja Hoon Koo,et al.  Colloidal Synthesis of Uniform‐Sized Molybdenum Disulfide Nanosheets for Wafer‐Scale Flexible Nonvolatile Memory , 2016, Advanced materials.

[6]  Qi Liu,et al.  Eliminating Negative‐SET Behavior by Suppressing Nanofilament Overgrowth in Cation‐Based Memory , 2016, Advanced materials.

[7]  Manuel Le Gallo,et al.  Stochastic phase-change neurons. , 2016, Nature nanotechnology.

[8]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[9]  Guofa Cai,et al.  Hexagonal Boron Nitride Thin Film for Flexible Resistive Memory Applications , 2016 .

[10]  F. Wen,et al.  Liquid‐Exfoliated Black Phosphorous Nanosheet Thin Films for Flexible Resistive Random Access Memory Applications , 2016 .

[11]  K. Sun,et al.  Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets. , 2016, Nano letters.

[12]  Wei Zhou,et al.  Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. , 2016, Nano letters.

[13]  Wei Huang,et al.  Non‐volatile Resistive Memory Devices Based on Solution‐Processed Ultrathin Two‐Dimensional Nanomaterials , 2015 .

[14]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[15]  P. Shepherd,et al.  A family of CMOS analog and mixed signal circuits in SiC for high temperature electronics , 2015, 2015 IEEE Aerospace Conference.

[16]  A. Bessonov,et al.  Layered memristive and memcapacitive switches for printable electronics. , 2015, Nature materials.

[17]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[18]  Alfonso Torres-Jácome,et al.  Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of Al/Al2O3/Al and Al/Al2O3/W structures fabricated on glass at 300 °C , 2014, Microelectron. Reliab..

[19]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[20]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[21]  Yuchao Yang,et al.  Oxide Resistive Memory with Functionalized Graphene as Built‐in Selector Element , 2014, Advanced materials.

[22]  F. Miao,et al.  Tunable, Ultralow‐Power Switching in Memristive Devices Enabled by a Heterogeneous Graphene–Oxide Interface , 2014, Advanced materials.

[23]  M. D. Molina,et al.  The Basic Model , 2014 .

[24]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[25]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[26]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[27]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[28]  Kinam Kim,et al.  In situ observation of filamentary conducting channels in an asymmetric Ta2O5−x/TaO2−x bilayer structure , 2013, Nature Communications.

[29]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[30]  Nicolas Grandjean,et al.  GaN-on-insulator technology for high-temperature electronics beyond 400 °C , 2013 .

[31]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[32]  M. Yun,et al.  Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. , 2013, Nature materials.

[33]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[34]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[35]  J. Tour,et al.  Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene , 2012, Nature Communications.

[36]  Fei Zeng,et al.  Oxygen migration induced resistive switching effect and its thermal stability in W/TaOx/Pt structure , 2012 .

[37]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[38]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[39]  J. Yang,et al.  Anatomy of a Nanoscale Conduction Channel Reveals the Mechanism of a High‐Performance Memristor , 2011, Advanced materials.

[40]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[41]  S. Ha,et al.  Adaptive oxide electronics: A review , 2011 .

[42]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[43]  Yuriy V. Pershin,et al.  Memory effects in complex materials and nanoscale systems , 2010, 1011.3053.

[44]  Frederick T. Chen,et al.  Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance , 2010, 2010 International Electron Devices Meeting.

[45]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[46]  T. Hasegawa,et al.  Learning Abilities Achieved by a Single Solid‐State Atomic Switch , 2010, Advanced materials.

[47]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[48]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[49]  Liping Ma,et al.  Study of multi-ON states in nonvolatile memory based on metal-insulator-metal structure , 2009 .

[50]  Hasan Sahin,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[51]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[52]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[53]  J. S. Lee,et al.  Occurrence of both unipolar memory and threshold resistance switching in a NiO film. , 2008, Physical review letters.

[54]  Frederick T. Chen,et al.  Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM , 2008, 2008 IEEE International Electron Devices Meeting.

[55]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[56]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[57]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[58]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[59]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[60]  N. Wu,et al.  Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. , 2006, Physical review letters.

[61]  M. Kozicki,et al.  A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte , 2006, IEEE Transactions on Nanotechnology.

[62]  R. McCreery,et al.  Electron transport and redox reactions in carbon-based molecular electronic junctions. , 2006, Physical chemistry chemical physics : PCCP.

[63]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[64]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[65]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[66]  J. Seiber Status and Prospects , 2005 .

[67]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[68]  L. J. T. M. Kempers,et al.  A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid , 2001 .

[69]  Nicolas Martin,et al.  Microstructure modification of amorphous titanium oxide thin films during annealing treatment , 1997 .

[70]  J. Lee,et al.  Leakage currents in amorphous Ta2O5 thin films , 1997 .

[71]  Stephen J. Pennycook,et al.  High-resolution Z-contrast imaging of crystals , 1991 .

[72]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[73]  I. Goldhirsch,et al.  Theory of thermophoresis. I. General considerations and mode-coupling analysis , 1983 .

[74]  L. Chua Memristor-The missing circuit element , 1971 .

[75]  W. 0. Winer Molybdenum disulfide as a lubricant: A review of the fundamental knowledge , 1967 .