Bifurcation of periodic solutions in differential inclusions

Ordinary differential inclusions depending on small parameters are considered such that the unperturbed inclusions are ordinary differential equations possessing manifolds of periodic solutions. Sufficient conditions are determined for the persistence of some of these periodic solutions after multivalued perturbations. Applications are given to dry friction problems.

[1]  R. Reissig,et al.  Erzwungene Schwingungen mit zher Dmpfung und starker Gleitreibung , 1954 .

[2]  R. Reissig Über die Stabilität gedämpfter erzwungener Bewegungen mit linearer Rückstellkraft , 1955 .

[3]  P. Hartman Ordinary Differential Equations , 1965 .

[4]  A. A. Andronow, A. A. Witt, and S. E. Chaikin Theorie der Schwingungen. Teil I. XVI + 492 S. m. 346 Abb. Berlin 1965. Akademie‐Verlag. Preis geb. MDN 74,50 , 1966 .

[5]  Tadeusz Pruszko,et al.  Topological degree methods in multi-valued boundary value problems , 1981 .

[6]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[7]  T. Pruszko Some applications of the topological degree theory to multi-valued boundary value problems , 1984 .

[8]  K. K.,et al.  Stick-slip vibrations and chaos , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[9]  K. Deimling Multivalued Differential Equations , 1992 .

[10]  Carmen Chicone,et al.  Lyapunov-Schmidt Reduction and Melnikov Integrals for Bifurcation of Periodic Solutions in Coupled Oscillators , 1994 .

[11]  Klaus Deimling,et al.  Periodic solutions of dry friction problems , 1994 .

[12]  Karl Popp,et al.  Dynamical behaviour of a friction oscillator with simultaneous self and external excitation , 1995 .

[13]  Michal Feckan Bifurcation from Homoclinic to Periodic Solutions in Ordinary Differential Equations with Multivalued Perturbations , 1996 .

[14]  Georg Hetzer,et al.  Almost periodicity enforced by Coulomb friction , 1996 .

[15]  Michal Feckan Bifurcation from homoclinic to periodic solutions in singularly perturbed differential inclusions , 1997 .