A scheme using finite‐volume method for local horizontal derivatives in spectral model: Hydrostatic case

The Yin‐He Global Spectral Model (YHGSM) is a dry‐mass conserving hydrostatic global spectral model, relying on spectral transforms to compute horizontal derivatives. We present an extension of YHGSM core named YHGSM‐FVM which uses a second‐order finite‐volume method (FVM) to compute the horizontal derivatives in grid‐point space instead of the spectral approach. With this approach, the computational efficiency of the spectral model is improved since part of the spectral transforms is superseded by FVM which only needs local data and the computational demand is lower. More importantly, YHGSM‐FVM is still a spectral model solving the Helmholtz equation directly in spectral space with a highly efficient semi‐implicit semi‐Lagrangian advection scheme. The comparisons between YHGSM‐FVM and YHGSM are conducted, and the results show that both models have comparable prediction skill, but YHGSM‐FVM outperforms YHGSM in computational efficiency.

[1]  Lifeng Zhang,et al.  Towards a dry‐mass conserving hydrostatic global spectral dynamical core in a general moist atmosphere , 2020, Quarterly Journal of the Royal Meteorological Society.

[2]  A. Zadra,et al.  Modernization of Atmospheric Physics Parameterization in Canadian NWP , 2019, Journal of Advances in Modeling Earth Systems.

[3]  Joanna Szmelter,et al.  FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS , 2019, Geoscientific Model Development.

[4]  Peter Bauer,et al.  Atlas : A library for numerical weather prediction and climate modelling , 2017, Comput. Phys. Commun..

[5]  Christian Kühnlein,et al.  A finite-volume module for cloud-resolving simulations of global atmospheric flows , 2017, J. Comput. Phys..

[6]  Piet Termonia,et al.  Generalization and application of the flux-conservative thermodynamic equations in the AROME model of the ALADIN system , 2016 .

[7]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[8]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[9]  Christiane Jablonowski,et al.  A proposed baroclinic wave test case for deep‐ and shallow‐atmosphere dynamical cores , 2014 .

[10]  Mats Hamrud,et al.  A Fast Spherical Harmonics Transform for Global NWP and Climate Models , 2013 .

[11]  Mariano Hortal,et al.  A finite‐element scheme for the vertical discretization of the semi‐Lagrangian version of the ECMWF forecast model , 2004 .

[12]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[13]  P. Lauritzen,et al.  Dynamical Core Model Intercomparison Project ( DCMIP 2016 ) Test Case Document , 2016 .

[14]  Mats Hamrud,et al.  A new grid for the IFS , 2016 .

[15]  C. Kühnlein,et al.  The modelling infrastructure of the Integrated Forecasting System : Recent advances and future challenges , 2015 .

[16]  A. Simmons,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[17]  J. Powis,et al.  [The quiet revolution]. , 1982, Josanpu zasshi = The Japanese journal for midwife.

[18]  A. Robert A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations , 1982 .