Selective and uniform Li-ion boosting polymer electrolyte for dendrite-less quasi-solid-state batteries

[1]  Anh Le Mong,et al.  Facile Li-Ion Conduction and Synergistic Electrochemical Performance Via Dual Functionalization of Flexible Solid Electrolyte for Li Metal Batteries , 2022, SSRN Electronic Journal.

[2]  Won Bo Lee,et al.  Pyrrolidinium‐PEG Ionic Copolyester: Li‐Ion Accelerator in Polymer Network Solid‐State Electrolytes , 2021, Advanced Energy Materials.

[3]  YingHuang,et al.  Three–dimensional fiber network reinforced polymer electrolyte for dendrite–free all–solid–state lithium metal batteries , 2021 .

[4]  Taeeun Yim,et al.  Single‐Ion Conducting Soft Electrolytes for Semi‐Solid Lithium Metal Batteries Enabling Cell Fabrication and Operation under Ambient Conditions , 2021, Advanced Energy Materials.

[5]  Zheng Zhang,et al.  Metal-Organic Framework-Supported Poly(ethylene oxide) Composite Gel Polymer Electrolytes for High-Performance Lithium/Sodium Metal Batteries. , 2021, ACS applied materials & interfaces.

[6]  Jian Yang,et al.  Phase-Separation-Induced Porous Lithiophilic Polymer Coating for High-Efficiency Lithium Metal Batteries. , 2021, Nano letters.

[7]  Xinxin Qu,et al.  Highly elastic and mechanically robust polymer electrolytes with high ionic conductivity and adhesiveness for high-performance lithium metal batteries , 2021 .

[8]  Xiaoen Wang,et al.  Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways , 2021, Nature Materials.

[9]  Luhan Ye,et al.  A dynamic stability design strategy for lithium metal solid state batteries , 2021, Nature.

[10]  Ayush Jain,et al.  Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries , 2021, Nature Materials.

[11]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[12]  Jin Il Kim,et al.  Optimized ion-conductive pathway in UV-cured solid polymer electrolytes for all-solid lithium/sodium ion batteries , 2021 .

[13]  Jens Leker,et al.  Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure , 2021, Nature Energy.

[14]  Zhiwei Zhang,et al.  Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries , 2020 .

[15]  Won Bo Lee,et al.  Polymer‐Clay Nanocomposite Solid‐State Electrolyte with Selective Cation Transport Boosting and Retarded Lithium Dendrite Formation , 2020, Advanced Energy Materials.

[16]  Christopher Y. Li,et al.  Designing Comb-Chain Crosslinker-Based Solid Polymer Electrolytes for Additive-Free All-Solid-State Lithium Metal Batteries. , 2020, Nano letters.

[17]  C. V. Singh,et al.  Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? , 2020 .

[18]  Shaofei Wang,et al.  Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries , 2020 .

[19]  J. Nanda,et al.  Well-designed Crosslinked Polymer Electrolyte Enables High Ionic Conductivity and Enhanced Salt Solvation , 2020 .

[20]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[21]  Qian Sun,et al.  A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries , 2020, Advanced Energy Materials.

[22]  B. Helms,et al.  Universal Chemomechanical Design Rules for Solid-Ion Conductors to Prevent Dendrite Formation in Lithium Metal Batteries. , 2019, 1901.04910.

[23]  Yuanwen Jiang,et al.  Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors , 2019, Nature Communications.

[24]  Jung Min Lee,et al.  Bicontinuously crosslinked polymer electrolyte membranes with high ion conductivity and mechanical strength , 2019, Journal of Membrane Science.

[25]  Jinqiu Zhou,et al.  A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery , 2019, Energy Storage Materials.

[26]  B. Lucht,et al.  Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries , 2019, Joule.

[27]  M. Armand,et al.  Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects , 2019, Chem.

[28]  Zhigang Xue,et al.  Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries , 2019, Journal of Materials Chemistry A.

[29]  Xiaokun Zhang,et al.  Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries , 2019, Nature Nanotechnology.

[30]  J. Rupp,et al.  A low ride on processing temperature for fast lithium conduction in garnet solid-state battery films , 2019, Nature Energy.

[31]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[32]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[33]  Baohua Li,et al.  High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries , 2019, Journal of Materials Chemistry A.

[34]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[35]  S. Chua,et al.  Hybrid Solid Polymer Electrolytes with Two-Dimensional Inorganic Nanofillers. , 2018, Chemistry.

[36]  David G. Mackanic,et al.  Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte , 2018, Advanced Energy Materials.

[37]  Yi Cui,et al.  Materials for lithium-ion battery safety , 2018, Science Advances.

[38]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[39]  J. Chai,et al.  High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis , 2017, Advanced science.

[40]  William L. Jorgensen,et al.  LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands , 2017, Nucleic Acids Res..

[41]  D. Brandell,et al.  Modelling the Polymer Electrolyte/Li-Metal Interface by Molecular Dynamics simulations , 2017 .

[42]  Yan‐Bing He,et al.  Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte , 2017, Advanced materials.

[43]  Yayuan Liu,et al.  An Artificial Solid Electrolyte Interphase with High Li‐Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes , 2017, Advanced materials.

[44]  Michael A Webb,et al.  Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes. , 2016, The journal of physical chemistry letters.

[45]  J. Vazquez-Arenas,et al.  An experimental and theoretical correlation to account for the effect of LiPF6 concentration on the ionic conductivity of poly(poly (ethylene glycol) methacrylate) , 2016 .

[46]  Dan He,et al.  Poly(ethylene oxide)-based electrolytes for lithium-ion batteries , 2015 .

[47]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[48]  Bing Sun,et al.  Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend. , 2015, The Journal of chemical physics.

[49]  H. Teng,et al.  Gel electrolytes based on an ether-abundant polymeric framework for high-rate and long-cycle-life lithium ion batteries , 2014 .

[50]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[51]  S. Hou,et al.  Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[52]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[53]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[54]  M. Johan,et al.  Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes , 2011 .

[55]  Pei-Chun Lin,et al.  Harnessing Surface Wrinkle Patterns in Soft Matter , 2010 .

[56]  Julian Tirado-Rives,et al.  Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  J. Chazalviel,et al.  Electrochemical aspects of the generation of ramified metallic electrodeposits. , 1990, Physical review. A, Atomic, molecular, and optical physics.