Climate Change Drives Widespread and Rapid Thermokarst Development in Very Cold Permafrost in the Canadian High Arctic

[1]  Isabelle Laurion,et al.  Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems , 2015 .

[2]  William B. Krantz,et al.  Arctic patterned-ground ecosystems: A synthesis of field studies and models along a North American Arctic Transect , 2008 .

[3]  J. Kimble,et al.  Soils and frost boil ecosystems across the North American Arctic Transect , 2008 .

[4]  Scott F. Lamoureux,et al.  Accelerating Thermokarst Transforms Ice‐Cored Terrain Triggering a Downstream Cascade to the Ocean , 2017 .

[5]  Douglas L. Kane,et al.  Progress in permafrost hydrology in the new millennium , 2008 .

[6]  J. Kimble,et al.  Cryogenesis and soil formation along a bioclimate gradient in Arctic North America , 2008 .

[7]  Trevor C. Lantz,et al.  Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada , 2017 .

[8]  Anna Liljedahl,et al.  Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology , 2016 .

[9]  Steven V. Kokelj,et al.  Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada , 2017 .

[10]  Marcel Buchhorn,et al.  Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska , 2017 .

[11]  F. Gullentops,et al.  Morphodynamics of Cold High Latitude Semiarid Regions: The Example of Ellef Ringnes Island, Nunavut , 2007 .

[12]  Trevor C. Lantz,et al.  Acceleration of thaw slump activity in glaciated landscapes of the Western Canadian Arctic , 2016 .

[13]  R. Way,et al.  Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment , 2019, Nature Communications.

[14]  Ian D. Clark,et al.  Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales , 2013 .

[15]  B. Jones,et al.  Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors , 2019, Environmental Research Letters.

[16]  M. A. Arain,et al.  Impacts of peat and vegetation on permafrost degradation under climate warming , 2007 .

[17]  E. S. Melnikov,et al.  The Circumpolar Arctic vegetation map , 2005 .

[18]  Robert H. Fraser,et al.  Climate Sensitivity of High Arctic Permafrost Terrain Demonstrated by Widespread Ice-Wedge Thermokarst on Banks Island , 2018, Remote. Sens..

[19]  M. Phillips,et al.  Permafrost is warming at a global scale , 2019, Nature Communications.

[20]  Ted Lewis,et al.  Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost disturbance, Cape Bounty, Melville Island, Canada , 2012 .

[21]  Vladimir E. Romanovsky,et al.  Thawing of the Active Layer on the Coastal Plain of the Alaskan Arctic , 1997 .

[22]  Yuri Shur,et al.  Patterns of permafrost formation and degradation in relation to climate and ecosystems , 2007 .

[23]  K. Everett Soil Development in the Mould Bay and Isachsen Areas, Queen Elizabeth Islands, Northwest Territories, Canada , 1968 .

[24]  Carson A. Baughman,et al.  Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects , 2015 .

[25]  Mikhail Kanevskiy,et al.  Cumulative geoecological effects of 62 years of infrastructure and climate change in ice‐rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska , 2014, Global change biology.

[26]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[27]  Susan S. Hubbard,et al.  Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem , 2015 .

[28]  Donald A. Walker,et al.  A map analysis of patterned‐ground along a North American Arctic Transect , 2008 .

[29]  Robert H. Fraser,et al.  Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada , 2015 .

[30]  Kenneth M. Hinkel,et al.  Estimating active-layer thickness over a large region: Kuparuk River Basin, Alaska, U.S.A , 1997 .

[31]  Adam Collingwood,et al.  Identifying permafrost slope disturbance using multi-temporal optical satellite images and change detection techniques , 2013 .

[32]  M. Torre Jorgenson,et al.  Regional Patterns and Asynchronous Onset of Ice-Wedge Degradation since the Mid-20th Century in Arctic Alaska , 2018, Remote. Sens..

[33]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[34]  S. Lamoureux,et al.  Fluvial Impact of Extensive Active Layer Detachments, Cape Bounty, Melville Island, Canada , 2009 .

[35]  A. Lewkowicz Dynamics of active‐layer detachment failures, Fosheim Peninsula, Ellesmere Island, Nunavut, Canada , 2007 .