Status of the Emerging InAlN/GaN Power HEMT Technology

The InAlN/GaN heterojunction appears to be a new alternative to the common AlGaN/GaN configuration with higher sheet charge density and higher thermal stability, promising very high power and temperature performance as well as robustness. This new system opens up the possibility to scale the barrier down to 5 nm while maintaining nearly its ideal materials and device properties. The status, focussing on the lattice matched materials configuration, is reviewed.

[1]  J. Carlin,et al.  High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN , 2003 .

[2]  A. Crespo,et al.  RF Power Measurements of InAlN/GaN Unstrained HEMTs on SiC Substrates at 10 GHz , 2007, IEEE Electron Device Letters.

[3]  H. Wang,et al.  Reliability evaluation of AlGaN/GaN HEMTs grown on SiC substrate , 2002, Proceedings. IEEE Lester Eastman Conference on High Performance Devices.

[4]  C. Gaquiere,et al.  Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices? , 2006, 2006 International Electron Devices Meeting.

[5]  Masayuki Abe,et al.  Short-channel effects in subquarter-micrometer-gate HEMTs: simulation and experiment , 1989 .

[6]  L. Eastman,et al.  The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs , 2000, IEEE Electron Device Letters.

[7]  C. Gaquiere,et al.  Characteristics of Al/sub 2/O/sub 3//AllnN /GaN MOSHEMT , 2007 .

[8]  E. Kohn,et al.  Characteristics of Al2O3=AlInN=GaN MOSHEMT , 2007 .

[9]  A. Pisch,et al.  In situ decomposition study of GaN thin films , 1998 .

[10]  M. Higashiwaki,et al.  AlGaN/GaN MIS-HFETs with f/sub T/ of 163 GHz using cat-CVD SiN gate-insulating and passivation Layers , 2006, IEEE Electron Device Letters.

[11]  J. Bläsing,et al.  Thermal stability of metal organic vapor phase epitaxy grown AlInN , 2007 .

[12]  A. Crespo,et al.  Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices , 2007, IEEE Transactions on Electron Devices.

[13]  Debdeep Jena,et al.  High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions , 2007 .

[14]  P. Parikh,et al.  40-W/mm Double Field-plated GaN HEMTs , 2006, 2006 64th Device Research Conference.

[15]  J. Kuzmik,et al.  Power electronics on InAlN/(In)GaN: Prospect for a record performance , 2001, IEEE Electron Device Letters.

[16]  A. Dadgar,et al.  GaN‐based epitaxy on silicon: stress measurements , 2003 .

[17]  Eizo Mitani,et al.  An 800-W AlGaN/GaN HEMT for S-band High-Power Application , 2007 .

[18]  E. Kohn,et al.  Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs , 1999, IEEE Electron Device Letters.

[19]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[20]  B. V. Shanabrook,et al.  Molecular beam epitaxy of InAlN∕GaN heterostructures for high electron mobility transistors , 2005 .

[21]  E. Kohn,et al.  High-sheet-charge–carrier-density AlInN∕GaN field-effect transistors on Si(111) , 2004 .

[22]  P. Schmid,et al.  Large signal frequency dispersion of AlGaN/GaN heterostructure field effect transistors , 1999 .