Relaxation labeling in stereo image matching

Abstract This paper outlines a method for solving the global stereovision matching problem using edge segments as the primitives. A relaxation scheme is the technique commonly used by existing methods to solve this problem. These techniques generally impose the following competing constraints: similarity, smoothness, ordering and uniqueness, and assume a bound on the disparity range. The smoothness constraint is basic in the relaxation process. We have verified that the smoothness and ordering constraints can be violated by objects close to the cameras and that the setting of the disparity limit is a serious problem. This problem also arises when repetitive structures appear in the scene (i.e. complex images), where the existing methods produce a high number of failures. We develop our approach from a relaxation labeling method ( [1] W.J. Christmas, J. Kittler, M. Petrou, Structural matching in computer vision using probabilistic relaxation, IEEE Trans. Pattern Anal. Mach. Intell. 17(8) (1995) 749–764), which allows us to map the above constraints. The main contribution is made, (1) by applying a learning strategy in the similarity constraint and (2) by introducing specific conditions to overcome the violation of the smoothness constraint and to avoid the serious problem produced by the required fixation of a disparity limit. Consequently, we improve the stereovision matching process. A better performance of the proposed method is illustrated by comparative analysis against some recent global matching methods.

[1]  Dong Hyun Kim,et al.  Analysis of quantization error in line-based stereo matching , 1994, Pattern Recognit..

[2]  Hong Yan,et al.  A new probabilistic relaxation method based on probability space partition , 1997, Pattern Recognit..

[3]  Vipin Kumar,et al.  Parallel Algorithms for Machine Intelligence and Vision , 2011, Symbolic Computation.

[4]  Yi-Hsing Tseng Image-to-Image Registration By Matching Area Features Using Fourier Descriptors And NeuralNetworks , 1997 .

[5]  Azriel Rosenfeld,et al.  Some experiments in relaxation image matching using corner features , 1983, Pattern Recognit..

[6]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  Ramakant Nevatia,et al.  Segment-based stereo matching , 1985, Comput. Vis. Graph. Image Process..

[8]  Thomas O. Binford,et al.  Depth from Edge and Intensity Based Stereo , 1981, IJCAI.

[9]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[11]  Shmuel Peleg,et al.  Stereo by Incremental Matching of Contours , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[13]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Gonzalo Pajares,et al.  Stereo matching technique based on the perceptron criterion function , 1995, Pattern Recognit. Lett..

[15]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[16]  Gonzalo Pajares,et al.  Relaxation by Hopfield network in stereo image matching , 1998, Pattern Recognit..

[17]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Pilar Rubio RP: un algoritmo eficiente para la búsqueda de correspondencias en visión estereoscópica , 1993 .

[19]  Theodosios Pavlidis,et al.  Why progress in machine vision is so slow , 1992, Pattern Recognit. Lett..

[20]  Gonzalo Pajares,et al.  A Neural Network model in stereovision matching , 1995, Neural Networks.

[21]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[22]  D. Maravall,et al.  Contribution to the matching problem in stereovision , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[23]  T. Poggio,et al.  A computational theory of human stereo vision , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[24]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[25]  E. R. Haddow,et al.  A parallel binocular stereo algorithm utilizing dynamic programming and relaxation labelling , 1987 .

[26]  Azriel Rosenfeld,et al.  Point pattern matching by relaxation , 1980, Pattern Recognit..

[27]  Gruia-Catalin Roman,et al.  A parallel algorithm for incremental stereo matching on SIMD machines , 1991, IEEE Trans. Robotics Autom..

[28]  Narendra Ahuja,et al.  Surfaces from Stereo: Integrating Feature Matching, Disparity Estimation, and Contour Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[30]  Shuichi Tanaka,et al.  A rule-based approach to binocular stereopsis , 1988 .

[31]  Nasser M. Nasrabadi A Stereo Vision Technique Using Curve-Segments and Relaxation Matching , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  T. Ozanian Approaches for Stereo Matching , 1995 .

[33]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Jae Chang Shim,et al.  Stereo correspondence using the Hopfield neural network of a new energy function , 1994, Pattern Recognit..

[35]  Nasser M. Nasrabadi,et al.  Hopfield network for stereo vision correspondence , 1992, IEEE Trans. Neural Networks.

[36]  Eric Paul Krotkov,et al.  Active Computer Vision by Cooperative Focus and Stereo , 1989, Springer Series in Perception Engineering.

[37]  Woo Young Choi,et al.  Stereo matching technique based on the theory of possibility , 1992, Pattern Recognit. Lett..

[38]  William B. Thompson,et al.  Disparity Analysis of Images , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[40]  K. S. Fu,et al.  Robótica: control, detección, visión e inteligencia , 1988 .

[41]  Jharna Majumdar,et al.  Efficient parallel processing for depth calculation using stereo , 1997, Robotics Auton. Syst..

[42]  Rama Chellappa,et al.  Artificial Neural Networks for Computer Vision , 1991, Research Notes in Neural Computing.

[43]  Stan Z. Li,et al.  Matching: Invariant to translations, rotations and scale changes , 1992, Pattern Recognit..

[44]  Jake K. Aggarwal,et al.  Stereo Matching in the Presence of Narrow Occluding Objects Using Dynamic Disparity Search , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Jin-Jang Leou,et al.  A bipartite matching approach to feature correspondence in stereo vision , 1995, Pattern Recognit. Lett..

[46]  Keith E. Price,et al.  Relaxation Matching Techniques-A Comparison , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Thomas S. Huang,et al.  Learning and Feature Selection in Stereo Matching , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Steven W. Zucker,et al.  On the Foundations of Relaxation Labeling Processes , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Kim L. Boyer,et al.  Robust Contour Decomposition Using a Constant Curvature Criterion , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Anil K. Jain,et al.  Analysis and Interpretation of Range Images , 1989, Springer Series in Perception Engineering.

[52]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[53]  Jia-Guu Leu,et al.  Detecting the dislocations in metal crystals from microscopic images , 1990, Pattern Recognit..

[54]  Gonzalo Pajares Martinsanz Estrategia de solución al problema de la correspondencia en visión estereoscópica por la jerarquía metodológica y la integración de criterios , 1995 .

[55]  R. J. Schalkoff,et al.  ANN Implementation of Stereo Vision Using a Multi-Layer Feedback Architecture , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[56]  Yassine Ruichek,et al.  A neural matching algorithm for 3-D reconstruction from stereo pairs of linear images , 1996, Pattern Recognit. Lett..

[57]  K. Ramesh Babu,et al.  Linear Feature Extraction and Description , 1979, IJCAI.

[58]  Kim L. Boyer,et al.  Structural Stereopsis for 3-D Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[60]  Jake K. Aggarwal,et al.  Positioning three-dimensional objects using stereo images , 1987, IEEE J. Robotics Autom..

[61]  Gérard G. Medioni,et al.  Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Martin A. Fischler,et al.  Computational Stereo , 1982, CSUR.

[63]  Shmuel Peleg,et al.  A New Probabilistic Relaxation Scheme , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Alireza Khotanzad,et al.  Stereopsis by constraint learning feed-forward neural networks , 1993, IEEE Trans. Neural Networks.