Early soft and flexible fusion of electroencephalography and functional magnetic resonance imaging via double coupled matrix tensor factorization for multisubject group analysis

Data fusion refers to the joint analysis of multiple datasets that provide different (e.g., complementary) views of the same task. In general, it can extract more information than separate analyses can. Jointly analyzing electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) measurements has been proved to be highly beneficial to the study of the brain function, mainly because these neuroimaging modalities have complementary spatiotemporal resolution: EEG offers good temporal resolution while fMRI is better in its spatial resolution. The EEG–fMRI fusion methods that have been reported so far ignore the underlying multiway nature of the data in at least one of the modalities and/or rely on very strong assumptions concerning the relation of the respective datasets. For example, in multisubject analysis, it is commonly assumed that the hemodynamic response function is a priori known for all subjects and/or the coupling across corresponding modes is assumed to be exact (hard). In this article, these two limitations are overcome by adopting tensor models for both modalities and by following soft and flexible coupling approaches to implement the multimodal fusion. The obtained results are compared against those of parallel independent component analysis and hard coupling alternatives, with both synthetic and real data (epilepsy and visual oddball paradigm). Our results demonstrate the clear advantage of using soft and flexible coupled tensor decompositions in scenarios that do not conform with the hard coupling assumption.

[1]  N. Shah,et al.  Modulation of the spontaneous brain activity and functional connectivity in the triple resting-state networks following the visual oddball paradigm , 2021, bioRxiv.

[2]  Javier Escudero,et al.  Canonical polyadic and block term decompositions to fuse EEG, phenotypic scores, and structural MRI of children with early-onset epilepsy , 2021, 2020 28th European Signal Processing Conference (EUSIPCO).

[3]  Gholam-Ali Hossein-Zadeh,et al.  Correlated coupled matrix tensor factorization method for simultaneous EEG-fMRI data fusion , 2020, Biomed. Signal Process. Control..

[4]  Jérémy E. Cohen,et al.  A Flexible Optimization Framework for Regularized Matrix-Tensor Factorizations With Linear Couplings , 2020, IEEE Journal of Selected Topics in Signal Processing.

[5]  Sabine Van Huffel,et al.  Early soft and flexible fusion of EEG and fMRI via tensor decompositions , 2020, ArXiv.

[6]  Simon Van Eyndhoven,et al.  Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data , 2020, NeuroImage.

[7]  Manuel Morante,et al.  A lite parametric model for the Hemodynamic Response Function , 2020, ArXiv.

[8]  Sergios Theodoridis,et al.  Tensor-based Blind fMRI Source Separation Without the Gaussian Noise Assumption — A β-Divergence Approach , 2019, 2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[9]  Patrick Dupont,et al.  Semi-automated EEG Enhancement Improves Localization of Ictal Onset Zone With EEG-Correlated fMRI , 2019, Front. Neurol..

[10]  A. Lennard-Jones John Lennard-Jones , 2019, British medical journal.

[11]  Jonathan M. Roberts,et al.  Extraction of Common Task Features in EEG-fMRI Data Using Coupled Tensor-Tensor Decomposition , 2019, Brain Topography.

[12]  E. Acar,et al.  Unraveling Diagnostic Biomarkers of Schizophrenia Through Structure-Revealing Fusion of Multi-Modal Neuroimaging Data , 2019, Frontiers in neuroscience.

[13]  Sergios Theodoridis,et al.  Blind fMRI source unmixing via higher-order tensor decompositions , 2019, Journal of Neuroscience Methods.

[14]  Xu Lei,et al.  Electrophysiological signatures of the resting-state fMRI global signal: A simultaneous EEG-fMRI study , 2019, Journal of Neuroscience Methods.

[15]  Pedro E. Maldonado,et al.  Reduced delta-band modulation underlies the loss of P300 responses in disorders of consciousness , 2018, Clinical Neurophysiology.

[16]  Sergios Theodoridis,et al.  Fusion of EEG and fMRI via Soft Coupled Tensor Decompositions , 2018, 2018 26th European Signal Processing Conference (EUSIPCO).

[17]  Vince D. Calhoun,et al.  Consecutive Independence and Correlation Transform for Multimodal Fusion: Application to Eeg and Fmri Data , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[18]  Sergios Theodoridis,et al.  Information Assisted Dictionary Learning for fMRI Data Analysis , 2018, IEEE Access.

[19]  Radoslaw Martin Cichy,et al.  The representational dynamics of task and object processing in humans , 2018, eLife.

[20]  E Kinney-Lang,et al.  Tensor-driven extraction of developmental features from varying paediatric EEG datasets , 2017, Journal of neural engineering.

[21]  Guy B. Williams,et al.  Accurate autocorrelation modeling substantially improves fMRI reliability , 2017, bioRxiv.

[22]  Graham W. Taylor,et al.  Deep Multimodal Learning: A Survey on Recent Advances and Trends , 2017, IEEE Signal Processing Magazine.

[23]  Lieven De Lathauwer,et al.  Coupled matrix-tensor factorizations — The case of partially shared factors , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[24]  Simon Van Eyndhoven,et al.  Flexible fusion of electroencephalography and functional magnetic resonance imaging: Revealing neural-hemodynamic coupling through structured matrix-tensor factorization , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[25]  Vince D. Calhoun,et al.  ACMTF for fusion of multi-modal neuroimaging data and identification of biomarkers , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[26]  Sergios Theodoridis,et al.  PARAFAC2 and its block term decomposition analog for blind fMRI source unmixing , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[27]  Erik Cambria,et al.  Tensor Fusion Network for Multimodal Sentiment Analysis , 2017, EMNLP.

[28]  Andrzej Cichocki,et al.  A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition , 2017, Front. Neurosci..

[29]  Javier Escudero,et al.  Complex Tensor Factorization With PARAFAC2 for the Estimation of Brain Connectivity From the EEG , 2017, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[30]  Lieven De Lathauwer,et al.  Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part I: Model and Identifiability , 2017, IEEE Transactions on Signal Processing.

[31]  Qiu-Hua Lin,et al.  Double Coupled Canonical Polyadic Decomposition for Joint Blind Source Separation , 2016, IEEE Transactions on Signal Processing.

[32]  V Salmela,et al.  Spatiotemporal Dynamics of Attention Networks Revealed by Representational Similarity Analysis of EEG and fMRI , 2016, Cerebral cortex.

[33]  Vince D. Calhoun,et al.  Tensor-based fusion of EEG and FMRI to understand neurological changes in schizophrenia , 2016, 2017 IEEE International Symposium on Circuits and Systems (ISCAS).

[34]  Wim Van Paesschen,et al.  Fusion of electroencephalography and functional magnetic resonance imaging to explore epileptic network activity , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[35]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[36]  Pierre-Antoine Absil,et al.  Coupled tensor decomposition: A step towards robust components , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[37]  Saeid Sanei,et al.  A new informed tensor factorization approach to EEG–fMRI fusion , 2015, Journal of Neuroscience Methods.

[38]  Vince D. Calhoun,et al.  Multimodal Data Fusion Using Source Separation: Two Effective Models Based on ICA and IVA and Their Properties , 2015, Proceedings of the IEEE.

[39]  Christian Jutten,et al.  Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects , 2015, Proceedings of the IEEE.

[40]  Vince D. Calhoun,et al.  Multimodal Data Fusion Using Source Separation: Application to Medical Imaging , 2015, Proceedings of the IEEE.

[41]  Rasmus Bro,et al.  Data Fusion in Metabolomics Using Coupled Matrix and Tensor Factorizations , 2015, Proceedings of the IEEE.

[42]  Wim Van Paesschen,et al.  Exploring the epileptic network with parallel ICA of interictal EEG-FMRI , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[43]  Pedro A. Valdes-Sosa,et al.  Tensor Analysis and Fusion of Multimodal Brain Images , 2015, Proceedings of the IEEE.

[44]  Xiaofeng Gong,et al.  Tensor decomposition of EEG signals: A brief review , 2015, Journal of Neuroscience Methods.

[45]  Pierre Comon,et al.  Exploring Multimodal Data Fusion Through Joint Decompositions with Flexible Couplings , 2015, IEEE Transactions on Signal Processing.

[46]  Ali Taylan Cemgil,et al.  Learning mixed divergences in coupled matrix and tensor factorization models , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[47]  Sergios Theodoridis,et al.  Machine Learning: A Bayesian and Optimization Perspective , 2015 .

[48]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[49]  Sabine Van Huffel,et al.  Incorporating higher dimensionality in joint decomposition of EEG and fMRI , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[50]  Dezhong Yao,et al.  Simultaneous EEG-fMRI: Trial level spatio-temporal fusion for hierarchically reliable information discovery , 2014, NeuroImage.

[51]  Olivier Cappé,et al.  Soft Nonnegative Matrix Co-Factorization , 2014, IEEE Transactions on Signal Processing.

[52]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[53]  P. Sajda,et al.  Simultaneous EEG-fMRI Reveals Temporal Evolution of Coupling between Supramodal Cortical Attention Networks and the Brainstem , 2013, The Journal of Neuroscience.

[54]  Lieven De Lathauwer,et al.  Coupled tensor decompositions for applications in array signal processing , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[55]  Rasmus Bro,et al.  Understanding data fusion within the framework of coupled matrix and tensor factorizations , 2013 .

[56]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[57]  Sungjin Hong,et al.  A critique of Tensor Probabilistic Independent Component Analysis: Implications and recommendations for multi-subject fMRI data analysis , 2013, Journal of Neuroscience Methods.

[58]  René J. Huster,et al.  Methods for Simultaneous EEG-fMRI: An Introductory Review , 2012, The Journal of Neuroscience.

[59]  Sabine Van Huffel,et al.  The “why” and “how” of JointICA: Results from a visual detection task , 2012, NeuroImage.

[60]  Lieven De Lathauwer,et al.  Block Component Analysis, a New Concept for Blind Source Separation , 2012, LVA/ICA.

[61]  Vince D. Calhoun,et al.  SimTB, a simulation toolbox for fMRI data under a model of spatiotemporal separability , 2012, NeuroImage.

[62]  Vince D. Calhoun,et al.  A review of multivariate methods for multimodal fusion of brain imaging data , 2012, Journal of Neuroscience Methods.

[63]  Tamara G. Kolda,et al.  All-at-once Optimization for Coupled Matrix and Tensor Factorizations , 2011, ArXiv.

[64]  Martin M. Monti,et al.  Human Neuroscience , 2022 .

[65]  Mark W. Woolrich,et al.  Linked independent component analysis for multimodal data fusion , 2011, NeuroImage.

[66]  Dezhong Yao,et al.  A parallel framework for simultaneous EEG/fMRI analysis: Methodology and simulation , 2010, NeuroImage.

[67]  A. Kleinschmidt,et al.  Intrinsic Connectivity Networks, Alpha Oscillations, and Tonic Alertness: A Simultaneous Electroencephalography/Functional Magnetic Resonance Imaging Study , 2010, The Journal of Neuroscience.

[68]  Vince D. Calhoun,et al.  Canonical Correlation Analysis for Data Fusion and Group Inferences , 2010, IEEE Signal Processing Magazine.

[69]  Sabine Van Huffel,et al.  Removal of BCG artifacts from EEG recordings inside the MR scanner: A comparison of methodological and validation-related aspects , 2010, NeuroImage.

[70]  E. Basar,et al.  A new interpretation of P300 responses upon analysis of coherences , 2010, Cognitive Neurodynamics.

[71]  Alexandra J. Golby,et al.  Comparison of blocked and event-related fMRI designs for pre-surgical language mapping , 2009, NeuroImage.

[72]  Vince D. Calhoun,et al.  A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data , 2009, NeuroImage.

[73]  Martin A. Lindquist,et al.  Modeling the hemodynamic response function in fMRI: Efficiency, bias and mis-modeling , 2009, NeuroImage.

[74]  Vince D. Calhoun,et al.  ICA for Fusion of Brain Imaging Data , 2008 .

[75]  M. Lindquist The Statistical Analysis of fMRI Data. , 2008, 0906.3662.

[76]  Toshihisa Tanaka,et al.  Signal Processing Techniques for Knowledge Extraction and Information Fusion , 2008 .

[77]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[78]  W. J. Williams,et al.  Decomposing delta, theta, and alpha time-frequency ERP activity from a visual oddball task using PCA. , 2007, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[79]  Michal Mikl,et al.  Effective connectivity in target stimulus processing: A dynamic causal modeling study of visual oddball task , 2007, NeuroImage.

[80]  Vince D. Calhoun,et al.  Neuronal chronometry of target detection: Fusion of hemodynamic and event-related potential data , 2005, NeuroImage.

[81]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[82]  R. Buxton,et al.  Modeling the hemodynamic response to brain activation , 2004, NeuroImage.

[83]  Nikos K Logothetis,et al.  On the nature of the BOLD fMRI contrast mechanism. , 2004, Magnetic resonance imaging.

[84]  T. Adali,et al.  Ieee Workshop on Machine Learning for Signal Processing Semi-blind Ica of Fmri: a Method for Utilizing Hypothesis-derived Time Courses in a Spatial Ica Analysis , 2022 .

[85]  Fumikazu Miwakeichi,et al.  Concurrent EEG/fMRI analysis by multiway Partial Least Squares , 2004, NeuroImage.

[86]  William S Rayens,et al.  Structure-seeking multilinear methods for the analysis of fMRI data , 2004, NeuroImage.

[87]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[88]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[89]  Naoki Miura,et al.  A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals , 2004, NeuroImage.

[90]  R. Bro,et al.  A new efficient method for determining the number of components in PARAFAC models , 2003 .

[91]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[92]  B. Ardekani,et al.  Functional magnetic resonance imaging of brain activity in the visual oddball task. , 2002, Brain research. Cognitive brain research.

[93]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[94]  Eric Zarahn,et al.  Using larger dimensional signal subspaces to increase sensitivity in fMRI time series analyses , 2002, Human brain mapping.

[95]  J. -B. Poline,et al.  Estimating the Delay of the fMRI Response , 2002, NeuroImage.

[96]  P. Skudlarski,et al.  Event-related fMRI of auditory and visual oddball tasks. , 2000, Magnetic resonance imaging.

[97]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[98]  M. D’Esposito,et al.  The Variability of Human, BOLD Hemodynamic Responses , 1998, NeuroImage.

[99]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[100]  T. Demiralp,et al.  Time–frequency analysis reveals multiple functional components during oddball P300 , 1997, Neuroreport.

[101]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[102]  Marina Cocchi,et al.  Data Fusion Methodology and Applications , 2019, Data Handling in Science and Technology.

[103]  Vince D. Calhoun,et al.  ICA and IVA for Data Fusion: An Overview and a New Approach Based on Disjoint Subspaces , 2019, IEEE Sensors Letters.

[104]  Peter Filzmoser,et al.  Data Normalization and Scaling: Consequences for the Analysis in Omics Sciences , 2018 .

[105]  Patrick Dupont,et al.  Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data , 2017, WIREs Data Mining Knowl. Discov..

[106]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[107]  Stefano Meletti,et al.  Integration of multimodal neuroimaging methods: a rationale for clinical applications of simultaneous EEG-fMRI. , 2015, Functional neurology.

[108]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..

[109]  Pierre Comon,et al.  Multimodal approach to estimate the ocular movements during EEG recordings: A coupled tensor factorization method , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[110]  E. Acar,et al.  Link prediction in heterogeneous data via generalized coupled tensor factorization , 2013, Data Mining and Knowledge Discovery.

[111]  V. Sinha,et al.  Event-related potential: An overview , 2009, Industrial psychiatry journal.

[112]  Saeid Sanei,et al.  EEG Signal Processing: Sanei/EEG Signal Processing , 2007 .

[113]  A. Stegeman Comparing Independent Component Analysis and the Parafac model for artificial multi-subject fMRI data , 2007 .

[114]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[115]  K. Kiehl,et al.  An event-related fMRI study of visual and auditory oddball tasks , 2001 .

[116]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.