Tensile-Strained Mid-Infrared GeSn Detectors Wrapped in Si 3N 4 Liner Stressor: Theoretical Investigation of Impact of Device Architectures

In this paper, we comparatively studied the energy band diagram and the cutoff wavelength characteristics of germanium-tin (GeSn) fin and pillar array detectors wrapped in a Si<sub>3</sub>N<sub>4</sub> liner stressor to unveil the impacts of tensile strain and device architecture in the absorption spectra of the devices. A large tensile strain is introduced into GeSn devices by the expansion of the Si<sub>3</sub>N<sub>4</sub> liner stressor. Compared to the fin detector, a larger tensile volume strain is demonstrated in the GeSn pillar architecture. With the tensile strain induced by the Si<sub>3</sub>N<sub>4</sub> liner stressor, the direct bandgap E<sub>G,Γ</sub> of GeSn is obviously shrinked by lowering the energy of the Γ conduction band valley, which results in a significant extension of absorption edge in the GeSn detectors. As the Si<sub>3</sub>N<sub>4</sub> liner stressor releases internal stress and expands, the absorption edge of the tensile-strained Ge<sub>0.90</sub>Sn<sub>0.10</sub> pillar array detector with the length of side of pillar L<sub>pillar</sub> of 100 nm is extended to 4.35 μm. With further improvement, the tensile-strained GeSn pillar architecture with the Si<sub>3</sub>N<sub>4</sub> liner stressor will be competitive for the application in 2-5-μm mid-infrared spectra.

[1]  Krishna C. Saraswat,et al.  7-nm FinFET CMOS Design Enabled by Stress Engineering Using Si, Ge, and Sn , 2014, IEEE Transactions on Electron Devices.

[2]  William A. Goddard,et al.  The Hessian biased force field for silicon nitride ceramics: Predictions of thermodynamic and mechanical properties for α‐ and β‐Si3N4 , 1992 .

[3]  A. E. Lim,et al.  Ge waveguide photodetectors with responsivity roll-off beyond 1620 nm using localized stressor , 2012, OFC/NFOEC.

[4]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[5]  Yi-Chiau Huang,et al.  Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge(Sn) materials for micro- and nanophotonics. , 2014, Nano letters.

[6]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[7]  Kazumi Wada,et al.  Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates , 2000 .

[8]  Krishna C. Saraswat,et al.  Achieving direct band gap in germanium through integration of Sn alloying and external strain , 2013 .

[9]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[10]  David Smith,et al.  Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission , 2012 .

[11]  Yan Liu,et al.  Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications. , 2015, Optics express.

[12]  Wei Du,et al.  Si based GeSn photoconductors with a 1.63 A/W peak responsivity and a 2.4 μm long-wavelength cutoff , 2014 .

[13]  G. Capellini,et al.  Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. , 2014, Optics express.

[14]  R. Soref,et al.  Franz-Keldysh electro-absorption modulation in germanium-tin alloys , 2012 .

[15]  S. Satoh,et al.  A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films , 2004, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[16]  L M Nguyen,et al.  Local bandgap control of germanium by silicon nitride stressor. , 2013, Optics express.

[17]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[18]  Shui-Qing Yu,et al.  Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications , 2009 .

[19]  Yan Liu,et al.  Simulation investigation of tensile strained GeSn fin photodetector with Si(3)N(4) liner stressor for extension of absorption wavelength. , 2015, Optics express.

[20]  R. Soref,et al.  Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. , 2010, Optics express.

[21]  Guy Fishman,et al.  Infrared absorption in Si/Si1-xGex/Si quantum wells , 1999 .

[22]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[23]  P. K. Basu,et al.  Theory of optical processes in semiconductors : bulk and microstructures , 1997 .

[24]  GeSn for nanoelectronic and optical applications , 2015, EUROSOI-ULIS 2015: 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon.

[25]  J. Brouillet,et al.  Pseudo single crystal, direct-band-gap Ge0.89Sn0.11 on amorphous dielectric layers towards monolithic 3D photonic integration , 2014 .

[26]  Qiming Wang,et al.  GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.

[27]  James S. Harris,et al.  Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy , 2011 .

[28]  Ying Luo,et al.  30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. , 2011, Optics express.

[29]  Takeshi Okagaki,et al.  Study of Stress from Discontinuous SiN Liner for Fully-Silicided Gate Process , 2007 .

[30]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[31]  R. Soref,et al.  Infrared spectral response of a GeSn p-i-n photodiode on Si , 2014, 11th International Conference on Group IV Photonics (GFP).

[32]  Isabelle Sagnes,et al.  Tensile-strained germanium microdisks , 2013 .

[33]  V. D'costa,et al.  Sn-alloying as a means of increasing the optical absorption of Ge at the C- and L-telecommunication bands , 2009 .

[34]  Jörg Schulze,et al.  GeSn p-i-n detectors integrated on Si with up to 4% Sn , 2012 .

[35]  Uwe Fink,et al.  Properties Of Semiconductor Alloys Group Iv Iii V And Ii Vi Semiconductors , 2016 .