On adaptive Metropolis–Hastings methods

This paper presents a method for adaptation in Metropolis–Hastings algorithms. A product of a proposal density and K copies of the target density is used to define a joint density which is sampled by a Gibbs sampler including a Metropolis step. This provides a framework for adaptation since the current value of all K copies of the target distribution can be used in the proposal distribution. The methodology is justified by standard Gibbs sampling theory and generalizes several previously proposed algorithms. It is particularly suited to Metropolis-within-Gibbs updating and we discuss the application of our methods in this context. The method is illustrated with both a Metropolis–Hastings independence sampler and a Metropolis-with-Gibbs independence sampler. Comparisons are made with standard adaptive Metropolis–Hastings methods.

[1]  Renate Meyer,et al.  Metropolis–Hastings algorithms with adaptive proposals , 2008, Stat. Comput..

[2]  J. Gåsemyr On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution , 2003 .

[3]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[4]  Kathryn B. Laskey,et al.  Population Markov Chain Monte Carlo , 2004, Machine Learning.

[5]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[6]  Jeffrey S. Rosenthal,et al.  Adaptive Gibbs samplers , 2010 .

[7]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[8]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[9]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[10]  George Y. Sofronov,et al.  Adaptive independence samplers , 2008, Stat. Comput..

[11]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[12]  Peter Green,et al.  Spatial statistics and Bayesian computation (with discussion) , 1993 .

[13]  Kerrie L. Mengersen Iid sampling with self-avoiding particle filters : the pinball sampler , 2001 .

[14]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[15]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[16]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[17]  Jeffrey S. Rosenthal,et al.  Coupling and Ergodicity of Adaptive MCMC , 2007 .

[18]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[19]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[20]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[21]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[22]  J. Griffin,et al.  Posterior Simulation of Normalized Random Measure Mixtures , 2011 .

[23]  P. Giordani,et al.  Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.

[24]  G. Warnes The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .

[25]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[26]  Walter R. Gilks,et al.  Adaptive Direction Sampling , 1994 .

[27]  J. Rosenthal,et al.  Adaptive Gibbs samplers and related MCMC methods , 2011, 1101.5838.

[28]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[29]  Fernando A. Quintana,et al.  Nonparametric Bayesian data analysis , 2004 .

[30]  Heikki Haario,et al.  Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..

[31]  E. Saksman,et al.  On the ergodicity of the adaptive Metropolis algorithm on unbounded domains , 2008, 0806.2933.