On adaptive Metropolis–Hastings methods
暂无分享,去创建一个
[1] Renate Meyer,et al. Metropolis–Hastings algorithms with adaptive proposals , 2008, Stat. Comput..
[2] J. Gåsemyr. On an adaptive version of the Metropolis-Hastings algorithm with independent proposal distribution , 2003 .
[3] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[4] Kathryn B. Laskey,et al. Population Markov Chain Monte Carlo , 2004, Machine Learning.
[5] Lancelot F. James,et al. Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .
[6] Jeffrey S. Rosenthal,et al. Adaptive Gibbs samplers , 2010 .
[7] Ajay Jasra,et al. On population-based simulation for static inference , 2007, Stat. Comput..
[8] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[9] O. Cappé,et al. Population Monte Carlo , 2004 .
[10] George Y. Sofronov,et al. Adaptive independence samplers , 2008, Stat. Comput..
[11] J. Besag,et al. Spatial Statistics and Bayesian Computation , 1993 .
[12] Peter Green,et al. Spatial statistics and Bayesian computation (with discussion) , 1993 .
[13] Kerrie L. Mengersen. Iid sampling with self-avoiding particle filters : the pinball sampler , 2001 .
[14] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[15] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.
[16] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[17] Jeffrey S. Rosenthal,et al. Coupling and Ergodicity of Adaptive MCMC , 2007 .
[18] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[19] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[20] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[21] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[22] J. Griffin,et al. Posterior Simulation of Normalized Random Measure Mixtures , 2011 .
[23] P. Giordani,et al. Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.
[24] G. Warnes. The Normal Kernel Coupler: An Adaptive Markov Chain Monte Carlo Method for Efficiently Sampling From Multi-Modal Distributions , 2001 .
[25] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[26] Walter R. Gilks,et al. Adaptive Direction Sampling , 1994 .
[27] J. Rosenthal,et al. Adaptive Gibbs samplers and related MCMC methods , 2011, 1101.5838.
[28] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[29] Fernando A. Quintana,et al. Nonparametric Bayesian data analysis , 2004 .
[30] Heikki Haario,et al. Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..
[31] E. Saksman,et al. On the ergodicity of the adaptive Metropolis algorithm on unbounded domains , 2008, 0806.2933.