Global hydrology 2015: State, trends, and directions

Global hydrology has come a long way since the first introduction of the primitive land surface model of Manabe (1969) and the declaration of the “Emergence of Global Hydrology” by Eagleson (1986). Hydrological submodels of varying complexity are now part of global climate models, of models calculating global terrestrial carbon sequestration, of earth system models, and even of integrated assessment models. This paper reviews the current state of global hydrological modeling, discusses past and recent developments, and extrapolates these to future challenges and directions. First, established domains of global hydrological model applications are discussed, in terms of societal and science questions posed, the type of models developed, and recent advances therein. Next, a genealogy of global hydrological models is given. After reviewing recent efforts to connect model components from different domains, new domains are identified where global hydrology is now starting to become an integral part of the analyses. Finally, inspired by these new domains of application, persistent and emerging challenges are identified as well as the directions global hydrology is likely to take in the coming decade and beyond.

[1]  Elena Shevliakova,et al.  An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies , 2014 .

[2]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[3]  Tessa Eikelboom,et al.  A physically based model of global freshwater surface temperature , 2012 .

[4]  F. Ludwig,et al.  Impact of reservoirs on river discharge and irrigation water supply during the 20th century , 2011 .

[5]  S. Kanae,et al.  Global flood risk under climate change , 2013 .

[6]  Eric F. Wood,et al.  Predicting the Discharge of Global Rivers , 2001, Journal of Climate.

[7]  Safouane Mouelhi,et al.  Linking stream flow to rainfall at the annual time step: The Manabe bucket model revisited , 2006 .

[8]  L. V. Beek,et al.  Water balance of global aquifers revealed by groundwater footprint , 2012, Nature.

[9]  Veena Srinivasan,et al.  Reimagining the past. Use of counterfactual trajectories in socio-hydrological modelling: The case of Chennai, India , 2015 .

[10]  E. Wood,et al.  Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling , 2006 .

[11]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[12]  H. Winsemius,et al.  A framework for global river flood risk assessments , 2012 .

[13]  E. Sudicky,et al.  Hyper‐resolution global hydrological modelling: what is next? , 2015 .

[14]  John Wahr,et al.  Monitoring the water balance of Lake Victoria, East Africa, from space. , 2009 .

[15]  Derek Karssenberg,et al.  Vegetation competition model for water and light limitation. I: Model description, one-dimensional competition and the influence of groundwater , 2010 .

[16]  T. Holmes,et al.  Global land-surface evaporation estimated from satellite-based observations , 2010 .

[17]  P. Döll,et al.  Global-scale modeling of groundwater recharge , 2008 .

[18]  W. Lucht,et al.  Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model , 2004 .

[19]  Petra Döll,et al.  Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. , 2010 .

[20]  David E. Rosenberg,et al.  Hydro-economic models: concepts, design, applications, and future prospects. , 2009 .

[21]  S. Attinger,et al.  Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale , 2010 .

[22]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[23]  Peter Droogers,et al.  Water resources trends in Middle East and North Africa towards 2050 , 2012 .

[24]  Brenden Jongman,et al.  Assessing flood risk at the global scale: model setup, results, and sensitivity , 2013 .

[25]  P. Döll,et al.  Sensitivity of simulated global-scale freshwater fluxes and storages to input data, hydrological model structure, human water use and calibration , 2014 .

[26]  Marc F. P. Bierkens,et al.  Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability , 2011 .

[27]  D. Lettenmaier,et al.  Anthropogenic impacts on continental surface water fluxes , 2006 .

[28]  A. Dalcher,et al.  A Simple Biosphere Model (SIB) for Use within General Circulation Models , 1986 .

[29]  A. Hoekstra,et al.  Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030 , 2012 .

[30]  A. Robock,et al.  The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements , 2011 .

[31]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[32]  C. Müller,et al.  Modelling the role of agriculture for the 20th century global terrestrial carbon balance , 2007 .

[33]  M. Rodell,et al.  Water in the Balance , 2013, Science.

[34]  H. Pan,et al.  Interaction between soil hydrology and boundary-layer development , 1987 .

[35]  B. Hurk,et al.  Spatial and temporal connections in groundwater contribution to evaporation , 2011 .

[36]  John H. C. Gash,et al.  Improving the representation of radiation interception and photosynthesis for climate model applications , 2007 .

[37]  M. Bierkens,et al.  Global depletion of groundwater resources , 2010 .

[38]  L. V. Beek,et al.  Global patterns of change in discharge regimes for 2100 , 2011 .

[39]  Petra Döll,et al.  A digital global map of irrigated areas. , 2000 .

[40]  T. Stacke,et al.  Multimodel projections and uncertainties of irrigation water demand under climate change , 2013 .

[41]  Kevin W. Manning,et al.  The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins , 2011 .

[42]  Ying Fan,et al.  Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations , 2007 .

[43]  C. Prigent,et al.  Modeling regional to global CH4 emissions of boreal and arctic wetlands , 2010 .

[44]  D. Kavetski,et al.  Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters , 2006 .

[45]  Lisa J. Graumlich,et al.  Interactive Canopies for a Climate Model , 1998 .

[46]  Ann Henderson-Sellers,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1995 .

[47]  Jan Vanderborght,et al.  Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources , 2010 .

[48]  B. Chao,et al.  Past and future contribution of global groundwater depletion to sea‐level rise , 2012 .

[49]  S. Kanae,et al.  A physically based description of floodplain inundation dynamics in a global river routing model , 2011 .

[50]  R. Maxwell,et al.  Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model , 2006 .

[51]  H. D. Cooper,et al.  A mid-term analysis of progress toward international biodiversity targets , 2014, Science.

[52]  D. Lettenmaier,et al.  A simple hydrologically based model of land surface water and energy fluxes for general circulation models , 1994 .

[53]  Scott D. Miller,et al.  Seasonal drought stress in the Amazon: Reconciling models and observations , 2008 .

[54]  K. Verdin,et al.  New Global Hydrography Derived From Spaceborne Elevation Data , 2008 .

[55]  F. Ludwig,et al.  Vulnerability of US and European electricity supply to climate change , 2012 .

[56]  R. Maxwell A terrain-following grid transform and preconditioner for parallel, large-scale, integrated hydrologic modeling , 2013 .

[57]  P. Döll,et al.  MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high‐resolution data set for agricultural and hydrological modeling , 2010 .

[58]  Sujan Koirala,et al.  Global‐scale land surface hydrologic modeling with the representation of water table dynamics , 2014 .

[59]  S. Kanae,et al.  An integrated model for the assessment of global water resources – Part 1: Model description and input meteorological forcing , 2008 .

[60]  Dennis P. Lettenmaier,et al.  Global river discharge and water temperature under climate change , 2013 .

[61]  Nigel W. Arnell,et al.  Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis , 2011 .

[62]  Jens Hartmann,et al.  Mapping permeability over the surface of the Earth , 2011 .

[63]  C. Vörösmarty,et al.  Global water resources: vulnerability from climate change and population growth. , 2000, Science.

[64]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[65]  G. Blöschl,et al.  Socio‐hydrology: A new science of people and water , 2012 .

[66]  P. Döll,et al.  A global hydrological model for deriving water availability indicators: model tuning and validation , 2003 .

[67]  S. Kanae,et al.  An integrated model for the assessment of global water resources – Part 2: Applications and assessments , 2008 .

[68]  S. Kanae,et al.  Global assessment of current water resources using total runoff integrating pathways , 2001 .

[69]  Chong-Yu Xu,et al.  Global water-balance modelling with WASMOD-M: Parameter estimation and regionalisation , 2007 .

[70]  Hans Joachim Schellnhuber,et al.  The elephant, the blind, and the intersectoral intercomparison of climate impacts , 2013, Proceedings of the National Academy of Sciences.

[71]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[72]  J. Deardorff Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation , 1978 .

[73]  P. Milly,et al.  Global Modeling of Land Water and Energy Balances. Part I: The Land Dynamics (LaD) Model , 2002 .

[74]  Marc F. P. Bierkens,et al.  A virtual water network of the Roman world , 2014 .

[75]  Malin Falkenmark,et al.  Meeting water requirements of an expanding world population , 1997 .

[76]  M. Bierkens,et al.  Global monthly water stress: 1. Water balance and water availability , 2011 .

[77]  P. Gleick Climate change, hydrology, and water resources , 1989 .

[78]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[79]  M. Bierkens,et al.  Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources , 2013 .

[80]  A. D. Roo,et al.  Physically-Based River Basin Modelling within a GIS: the LISFLOOD Model. , 2000 .

[81]  Dmitri Kavetski,et al.  A unified approach for process‐based hydrologic modeling: 1. Modeling concept , 2015 .

[82]  H. Pan,et al.  A two-layer model of soil hydrology , 1984 .

[83]  A. Hoekstra,et al.  Globalisation of water resources: Global virtual water flows in relation to international crop trade , 2005 .

[84]  Nigel W. Arnell,et al.  A simple water balance model for the simulation of streamflow over a large geographic domain , 1999 .

[85]  F. Weiland Hydrological impacts of climate change : interpretation of uncertainties introduced by global models of climate and hydrology , 2011 .

[86]  D. Randall,et al.  A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation , 1996 .

[87]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[88]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[89]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[90]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[91]  S. Kanae,et al.  Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage , 2012 .

[92]  Peter S. Eagleson The Emergence of Global‐Scale Hydrology , 1986 .

[93]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[94]  M. Ek,et al.  Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water , 2011 .

[95]  David Yates,et al.  WEAP21—A Demand-, Priority-, and Preference-Driven Water Planning Model , 2005 .

[96]  L. Konikow Contribution of global groundwater depletion since 1900 to sea‐level rise , 2011 .

[97]  M. Bierkens,et al.  The benefits of using remotely sensed soil moisture in parameter identification of large‐scale hydrological models , 2013 .

[98]  L. Alfieri,et al.  GloFAS – global ensemble streamflow forecasting and flood early warning , 2012 .

[99]  Charles J Vörösmarty,et al.  Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling , 1998 .

[100]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[101]  Rolf Weingartner,et al.  Global monthly water stress: 2. Water demand and severity of water stress , 2011 .

[102]  D. Lawrence,et al.  GLACE: The Global Land-Atmosphere Coupling Experiment. Part I: Overview , 2006 .

[103]  A. Perrier,et al.  SECHIBA : a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model , 1993 .

[104]  A. Weerts,et al.  Skill of a global seasonal streamflow forecasting system, relative roles of initial conditions and meteorological forcing , 2013 .

[105]  Y. Xue,et al.  Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models , 1995 .

[106]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[107]  Jens Hartmann,et al.  The new global lithological map database GLiM: A representation of rock properties at the Earth surface , 2012 .

[108]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[109]  Dmitri Kavetski,et al.  Pursuing the method of multiple working hypotheses for hydrological modeling , 2011 .

[110]  C. Paniconi,et al.  Surface‐subsurface flow modeling with path‐based runoff routing, boundary condition‐based coupling, and assimilation of multisource observation data , 2010 .

[111]  F. Ludwig,et al.  Global water resources affected by human interventions and climate change , 2013, Proceedings of the National Academy of Sciences.

[112]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[113]  C.A.J. Appelo,et al.  Some Calculations on Multicomponent Transport with Cation Exchange in Aquifers , 1994 .

[114]  P. Döll,et al.  Development and testing of the WaterGAP 2 global model of water use and availability , 2003 .

[115]  Marc F. P. Bierkens,et al.  A high-resolution global-scale groundwater model , 2013 .

[116]  Christian Blondin,et al.  Parameterization of Land-Surface Processes in Numerical Weather Prediction , 1991 .

[117]  L. V. Beek,et al.  Assessment of the potential forecasting skill of a global hydrological model in reproducing the occurrence of monthly flow extremes , 2012 .

[118]  Dieter Gerten,et al.  Effects of Precipitation Uncertainty on Discharge Calculations for Main River Basins , 2009 .

[119]  Pavel Kabat,et al.  WATCH: Current Knowledge of the Terrestrial Global Water Cycle , 2011 .

[120]  K. Mitchell,et al.  Simple water balance model for estimating runoff at different spatial and temporal scales , 1996 .

[121]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[122]  Petra Döll,et al.  Global modeling of irrigation water requirements , 2002 .

[123]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[124]  M. Kummu,et al.  Climate-driven interannual variability of water scarcity in food production potential: a global analysis , 2013 .

[125]  J. Rockström,et al.  Future water availability for global food production: The potential of green water for increasing resilience to global change , 2009 .

[126]  E. Todini,et al.  A rainfall–runoff scheme for use in the Hamburg climate model , 1992 .

[127]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[128]  F. Ludwig,et al.  Global streamflow and thermal habitats of freshwater fishes under climate change , 2013, Climatic Change.

[129]  R. Dickinson,et al.  The Common Land Model , 2003 .

[130]  Dieter Gerten,et al.  Global Water Availability and Requirements for Future Food Production , 2011 .

[131]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[132]  J. McDonnell,et al.  A decade of Predictions in Ungauged Basins (PUB)—a review , 2013 .

[133]  A. Hoekstra,et al.  Globalization of Water: Sharing the Planet's Freshwater Resources , 2008 .

[134]  Martina Flörke,et al.  Modeling variable river flow velocity on continental scale: Current situation and climate change impacts in Europe , 2012 .

[135]  P. Döll,et al.  High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management , 2011 .

[136]  Howard S. Wheater,et al.  On inclusion of water resource management in Earth system models - Part 2: Representation of water supply and allocation and opportunities for improved modeling , 2014 .

[137]  Murugesu Sivapalan,et al.  Scale issues in hydrological modelling: A review , 1995 .

[138]  Pedro Viterbo,et al.  An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. , 1995 .

[139]  C. Simmons,et al.  HydroGeoSphere: A Fully Integrated, Physically Based Hydrological Model , 2012 .

[140]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[141]  Y. Fan,et al.  Global Patterns of Groundwater Table Depth , 2013, Science.

[142]  Keith Beven,et al.  Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface , 2014, Science China Earth Sciences.

[143]  Robert Gross,et al.  Global bioenergy resources , 2014 .

[144]  Peter H. Gleick,et al.  Water in crisis: a guide to the world's fresh water resources , 1993 .

[145]  D. Lettenmaier,et al.  Global monitoring of large reservoir storage from satellite remote sensing , 2011 .

[146]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[147]  E. Ansink,et al.  Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain) , 2014, Regional Environmental Change.

[148]  Sander Houweling,et al.  Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications , 2014 .

[149]  M. Falkenmark The massive water scarcity now threatening Africa - why isn't it being addressed? , 1989 .

[150]  Bernhard Lehner,et al.  The impact of global change on the hydropower potential of Europe: a model-based analysis , 2005 .

[151]  V. Brovkin,et al.  Impact of soil moisture‐climate feedbacks on CMIP5 projections: First results from the GLACE‐CMIP5 experiment , 2013 .

[152]  Kevin W. Manning,et al.  The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements , 2011 .

[153]  Zhichang Guo,et al.  Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 1. Intermodel comparison , 2006 .

[154]  P. McIntyre,et al.  Global threats to human water security and river biodiversity , 2010, Nature.

[155]  W. Wagner,et al.  Global Soil Moisture Patterns Observed by Space Borne Microwave Radiometers and Scatterometers , 2008 .

[156]  Zong-Liang Yang,et al.  Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil Moisture Workshop and evaluation of its performance , 1996 .

[157]  Günter Blöschl,et al.  Socio-hydrology: conceptualising human-flood interactions , 2013 .

[158]  Naota Hanasaki,et al.  A reservoir operation scheme for global river routing models , 2006 .

[159]  W. J. Shuttleworth,et al.  Creation of the WATCH Forcing Data and Its Use to Assess Global and Regional Reference Crop Evaporation over Land during the Twentieth Century , 2011 .

[160]  S. Manabe CLIMATE AND THE OCEAN CIRCULATION1 , 1969 .

[161]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[162]  Stefan Hagemann,et al.  A parametrization of the lateral waterflow for the global scale , 1997 .

[163]  B. Hurk,et al.  Contribution of Dynamic Vegetation Phenology to Decadal Climate Predictability , 2014 .

[164]  A. Brath,et al.  Analysis of the effects of levee heightening on flood propagation: example of the River Po, Italy , 2009 .

[165]  Suxia Liu,et al.  Evaluation of Global Soil Wetness Project Soil Moisture Simulations , 1999 .

[166]  W. Lucht,et al.  Agricultural green and blue water consumption and its influence on the global water system , 2008 .

[167]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[168]  Rob Alkemade,et al.  GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss , 2009, Ecosystems.

[169]  Thomas Berger,et al.  Quantifying the economic importance of irrigation water reuse in a Chilean watershed using an integrated agent‐based model , 2015 .

[170]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[171]  Robert E. Dickinson,et al.  Modeling Evapotranspiration for Three‐Dimensional Global Climate Models , 2013 .

[172]  J. M. Van Der Knijff,et al.  LISFLOOD : a GIS-based distributed model for river basin scale water balance and flood simulation , 2008 .

[173]  H. Wheater,et al.  On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand , 2014 .

[174]  Naota Hanasaki,et al.  Virtual water trade flows and savings under climate change , 2013 .

[175]  Marc F. P. Bierkens,et al.  Upscaling and downscaling methods for environmental research , 2000 .

[176]  Changsheng Li,et al.  Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain , 2010 .

[177]  Kumiko Takata,et al.  Development of the minimal advanced treatments of surface interaction and runoff , 2003 .

[178]  Dennis P. Lettenmaier,et al.  The Global Water System Project: Science Framework and Implementation Activities , 2005 .

[179]  Murugesu Sivapalan,et al.  Socio-hydrologic modeling to understand and mediate the competition for water between agriculture development and environmental health : Murrumbidgee River Basin, Australia , 2014 .

[180]  M. Bierkens,et al.  Linking groundwater use and stress to specific crops using the groundwater footprint in the Central Valley and High Plains aquifer systems, U.S. , 2014 .

[181]  Marc F. P. Bierkens,et al.  Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds , 2013 .

[182]  P. Jones,et al.  Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate , 2000 .

[183]  S. Seneviratne,et al.  Land–atmosphere coupling and climate change in Europe , 2006, Nature.

[184]  I. Rodríguez‐Iturbe,et al.  Coupled Dynamics of Photosynthesis, Transpiration, and Soil Water Balance. Part I: Upscaling from Hourly to Daily Level , 2004 .

[185]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[186]  D. Lodge,et al.  Scenarios of freshwater fish extinctions from climate change and water withdrawal , 2005 .

[187]  Felipe J. Colón-González,et al.  Multimodel assessment of water scarcity under climate change , 2013, Proceedings of the National Academy of Sciences.

[188]  C. Prigent,et al.  Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets , 2011 .

[189]  K. Beven,et al.  Comment on “Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water” by Eric F. Wood et al. , 2012 .

[190]  B. D. Vries,et al.  Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach , 2007 .

[191]  F. Pappenberger,et al.  Deriving global flood hazard maps of fluvial floods through a physical model cascade , 2012 .

[192]  Jens Hartmann,et al.  A glimpse beneath earth's surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity , 2014 .

[193]  B. Hurk,et al.  A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System , 2009 .