Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems

In the presence of parameter uncertainty tracking control can result in significant tracking errors. To overcome this problem adaptive control is applied, which estimates and compensates for the errors of the uncertain parameters. A new adaptive tracking control scheme is presented for standard fully actuated port-Hamiltonian mechanical systems. The adaptive control is such that the closed loop error system is still port-Hamiltonian and asymptotically stable.

[1]  Bayu Jayawardhana,et al.  Tracking and disturbance rejection for fully actuated mechanical systems , 2008, Autom..

[2]  Alessandro Astolfi,et al.  Towards applied nonlinear adaptive control , 2007, Annu. Rev. Control..

[3]  Dan Koditschek,et al.  Natural motion for robot arms , 1984, The 23rd IEEE Conference on Decision and Control.

[4]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[5]  R. Ortega Passivity-based control of Euler-Lagrange systems : mechanical, electrical and electromechanical applications , 1998 .

[6]  Daizhan Cheng,et al.  Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems , 2007, Autom..

[7]  Kazunori Sakurama,et al.  Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations , 2001, Autom..

[8]  T. Sugie,et al.  Canonical transformation and stabilization of generalized Hamiltonian systems , 1998 .

[9]  Romeo Ortega,et al.  An Adaptive Friction Compensator for Global Tracking in Robot Manipulators , 1997 .

[10]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[11]  Jean-Jacques E. Slotine,et al.  Adaptive manipulator control: A case study , 1988 .

[12]  Stefano Di Gennaro,et al.  Discrete time sliding mode control with application to induction motors , 2008, Autom..

[13]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[14]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[15]  C. Bonivento,et al.  Internal model based fault tolerant control of a robot manipulator , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  Romeo Ortega,et al.  An adaptive friction compensator for global tracking in robot manipulators , 1998 .

[17]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .