Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance

Perovskite hybrid solar cells (pero-HSCs) were demonstrated to be among the most promising candidates within the emerging photovoltaic materials with respect to their power conversion efficiency (PCE) and inexpensive fabrication. Further PCE enhancement mainly relies on minimizing the interface losses via interface engineering and the quality of the perovskite film. Here, we demonstrate that the PCEs of pero-HSCs are significantly increased to 14.0% by incorporation of a solution-processed perylene–diimide (PDINO) as cathode interface layer between the [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) layer and the top Ag electrode. Notably, for PDINO-based devices, prominent PCEs over 13% are achieved within a wide range of the PDINO thicknesses (5–24 nm). Without the PDINO layer, the best PCE of the reference PCBM/Ag device was only 10.0%. The PCBM/PDINO/Ag devices also outperformed the PCBM/ZnO/Ag devices (11.3%) with the well-established zinc oxide (ZnO) cathode interface layer. This enhanced performa...

[1]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[2]  Christoph J. Brabec,et al.  Interface Design to Improve the Performance and Stability of Solution‐Processed Small‐Molecule Conventional Solar Cells , 2014 .

[3]  Chun-Guey Wu,et al.  Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process , 2014 .

[4]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[5]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[6]  Xiaoming Ge,et al.  Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction , 2014 .

[7]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[8]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[9]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[10]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[11]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[12]  Jin Young Kim,et al.  Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. , 2014, Nanoscale.

[13]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[14]  Boyuan Qi,et al.  Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells , 2014 .

[15]  Talha M. Khan,et al.  Organic photovoltaic cells with stable top metal electrodes modified with polyethylenimine. , 2014, ACS applied materials & interfaces.

[16]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[17]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[18]  Christoph J. Brabec,et al.  Alkyl Chain Engineering of Solution‐Processable Star‐Shaped Molecules for High‐Performance Organic Solar Cells , 2014 .

[19]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[20]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[21]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[22]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[23]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[24]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[25]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[26]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[27]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[28]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[29]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[30]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[31]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[32]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[33]  Alan J. Heeger,et al.  Intensity dependence of current-voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. , 2013, ACS nano.

[34]  C. Brabec,et al.  High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer , 2012 .

[35]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[36]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[37]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[38]  Christoph J. Brabec,et al.  High shunt resistance in polymer solar cells comprising a MoO3 hole extraction layer processed from nanoparticle suspension , 2011 .

[39]  A. Heeger,et al.  Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. , 2011, Journal of the American Chemical Society.

[40]  Christoph J. Brabec,et al.  Fabrication, Optical Modeling, and Color Characterization of Semitransparent Bulk‐Heterojunction Organic Solar Cells in an Inverted Structure , 2010 .

[41]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[42]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[43]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[44]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .