Second Hankel Determinant for a Class of Analytic Functions Defined by Fractional Derivative
暂无分享,去创建一个
[1] Shusen Ding,et al. A Class of Analytic Functions Defined by Fractional Derivation , 1994 .
[2] Toshio Umezawa,et al. ON THE THEORY OF UNIVALENT FUNCTIONS , 1955 .
[3] S. D. Bernardi,et al. Convex and starlike univalent functions , 1969 .
[4] B. C. Carlson,et al. Starlike and Prestarlike Hypergeometric Functions , 1984 .
[5] Hari M. Srivastava,et al. Properties and characteristics of certain subclasses of starlike functions of order β , 2008, Math. Comput. Model..
[6] T. Sheil-Small,et al. Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture , 1973 .
[7] S. Ruscheweyh,et al. Subordination under convex univalent functions , 1985 .
[8] Wolfram Koepf,et al. On the Fekete-Szegö problem for close-to-convex functions II , 1987 .
[9] Maslina Darus,et al. Coefficient inequality for a function whose derivative has a positive real part , 2006 .
[10] M. Fekete,et al. Eine Bemerkung Über Ungerade Schlichte Funktionen , 1933 .
[11] Richard J. Libera,et al. Early coefficients of the inverse of a regular convex function , 1982 .
[12] BY,et al. ON THE SECOND HANKEL DETERMINANT OF AREALLY MEAN p-VALENT FUNCTIONS , 2010 .
[13] Hari M. Srivastava,et al. Univalent and Starlike Generalized Hypergeometric Functions , 1987, Canadian Journal of Mathematics.
[14] Richard J. Libera,et al. Coefficient bounds for the inverse of a function with derivative in . II , 1983 .
[15] D. K. Thomas,et al. On the second Hankel determinant of areally mean $p$-valent functions , 1976 .