Second Hankel Determinant for a Class of Analytic Functions Defined by Fractional Derivative

By making use of the fractional differential operator due to Owa and Srivastava, a class of analytic functions is introduced. The sharp bound for the nonlinear functional is found. Several basic properties such as inclusion, subordination, integral transform, Hadamard product are also studied.

[1]  Shusen Ding,et al.  A Class of Analytic Functions Defined by Fractional Derivation , 1994 .

[2]  Toshio Umezawa,et al.  ON THE THEORY OF UNIVALENT FUNCTIONS , 1955 .

[3]  S. D. Bernardi,et al.  Convex and starlike univalent functions , 1969 .

[4]  B. C. Carlson,et al.  Starlike and Prestarlike Hypergeometric Functions , 1984 .

[5]  Hari M. Srivastava,et al.  Properties and characteristics of certain subclasses of starlike functions of order β , 2008, Math. Comput. Model..

[6]  T. Sheil-Small,et al.  Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture , 1973 .

[7]  S. Ruscheweyh,et al.  Subordination under convex univalent functions , 1985 .

[8]  Wolfram Koepf,et al.  On the Fekete-Szegö problem for close-to-convex functions II , 1987 .

[9]  Maslina Darus,et al.  Coefficient inequality for a function whose derivative has a positive real part , 2006 .

[10]  M. Fekete,et al.  Eine Bemerkung Über Ungerade Schlichte Funktionen , 1933 .

[11]  Richard J. Libera,et al.  Early coefficients of the inverse of a regular convex function , 1982 .

[12]  BY,et al.  ON THE SECOND HANKEL DETERMINANT OF AREALLY MEAN p-VALENT FUNCTIONS , 2010 .

[13]  Hari M. Srivastava,et al.  Univalent and Starlike Generalized Hypergeometric Functions , 1987, Canadian Journal of Mathematics.

[14]  Richard J. Libera,et al.  Coefficient bounds for the inverse of a function with derivative in . II , 1983 .

[15]  D. K. Thomas,et al.  On the second Hankel determinant of areally mean $p$-valent functions , 1976 .