Ferroelectric Size Effects

In this chapter, we have reviewed, with a focus on our own efforts, the history, current and future perspectives on the problem of ferroelectric size effects. This past decade has seen an explosion of activity in the field of nanoscale ferroelectrics, with a broad spectrum of novel and artificial materials explored, and a huge potential for new discoveries and novel applications and devices. It is safe to say that although we are at present building a solid understanding of the fundamental driving force for ferroelectric size effects, we can expect some new and fascinating physics to manifest itself as we continue to push the envelope in this exciting and rapidly developing area.

[1]  Rainer Waser,et al.  Coercive field of ultrathin Pb(Zr0.52Ti0.48)O3 epitaxial films , 2003 .

[2]  E. Colla,et al.  Artificial dielectric superlattices with broken inversion symmetry. , 2003, Physical review letters.

[3]  Kenji Uchino,et al.  Dependence of the Crystal Structure on Particle Size in Barium Titanate , 1989 .

[4]  A. Tagantsev Size effects in polarization switching in ferroelectric thin films , 1997 .

[5]  P. Littlewood,et al.  LETTER TO THE EDITOR: Depolarization corrections to the coercive field in thin-film ferroelectrics , 2003 .

[6]  J. Melngailis,et al.  Scaling of ferroelectric properties in thin films , 1999 .

[7]  P. J. van Veldhoven,et al.  Ferroelectric properties and fatigue of PbZr0.51Ti0.49O3 thin films of varying thickness: Blocking layer model , 1994 .

[8]  Zheng-hao Chen,et al.  Phase transitions and polarizations in epitaxial BaTiO3/SrTiO3 superlattices studied by second-harmonic generation , 2003 .

[9]  T. Tsurumi,et al.  Structural Refinement of X-Ray Diffraction Profile for Artificial Superlattices , 2000 .

[10]  Stephen Ducharme,et al.  Two-dimensional ferroelectric films , 1998, Nature.

[11]  Chang-Beom Eom,et al.  Synthesis and properties of YBa2Cu3O7 thin films grown in situ by 90° off-axis single magnetron sputtering , 1990 .

[12]  Finite-size effects in BaTiO3 nanowires , 2005, cond-mat/0503362.

[13]  F. J. García de abajo,et al.  X-ray photoelectron diffraction study of ultrathin PbTiO3 films , 2006 .

[14]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[15]  M. Alexe,et al.  Self-patterning nano-electrodes on ferroelectric thin films for gigabit memory applications , 1998 .

[16]  Dominique Givord,et al.  Beating the superparamagnetic limit with exchange bias , 2003, Nature.

[17]  M A Alam,et al.  Observation of a strongly nested Fermi surface in the shape-memory alloy Ni0.62Al0.38. , 2006, Physical review letters.

[18]  B. Zou,et al.  Sol-gel synthesis of free-standing ferroelectric lead zirconate titanate nanoparticles. , 2001, Journal of the American Chemical Society.

[19]  N. Lebedev,et al.  Surface inhomogeneities and coercive field of thin ferroelectric films , 1994 .

[20]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[21]  K. Rabe,et al.  Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films , 1999, cond-mat/9911354.

[22]  Okada,et al.  Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. , 1988, Physical review. B, Condensed matter.

[23]  A. Tagantsev,et al.  Identification of Passive Layer in Ferroelectric Thin-Films from Their Switching Parameters , 1995 .

[24]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[25]  P. V. Dressendorfer,et al.  Device modeling of ferroelectric capacitors , 1990 .

[26]  V. Lo Modeling the role of oxygen vacancy on ferroelectric properties in thin films , 2002 .

[27]  B. Silverman,et al.  Depolarization fields in thin ferroelectric films , 1973 .

[28]  D. Vanderbilt,et al.  Ab initio study of BaTiO 3 and PbTiO 3 surfaces in external electric fields , 2000, cond-mat/0009288.

[29]  H. Fujisawa,et al.  Self-Assembled PbTiO3 Nano-Islands Prepared on SrTiO3 by Metalorganic Chemical Vapor Deposition , 2003 .

[30]  J. Junquera,et al.  First principles modeling of ferroelectric oxide nanostructures. , 2006, cond-mat/0605299.

[31]  Philippe Ghosez,et al.  Ferroelectricity and tetragonality in ultrathin PbTiO3 films. , 2004, Physical review letters.

[32]  W. Känzig Space Charge Layer Near the Surface of a Ferroelectric , 1955 .

[33]  Y. Park,et al.  Thickness-dependent ferroelectric properties in fully-strained SrRuO3/BaTiO3/SrRuO3 ultra-thin capacitors , 2005 .

[34]  U. Gösele,et al.  100-nm lateral size ferroelectric memory cells fabricated by electron-beam direct writing , 2000 .

[35]  Yoshiyuki Kawazoe,et al.  Critical size and anomalous lattice expansion in nanocrystalline BaTiO 3 particles , 2000 .

[36]  O. Vendik,et al.  Ferroelectric phase transition and maximum dielectric permittivity of displacement type ferroelectrics (BaxSr1−xTiO3) , 2000 .

[37]  A. Gruverman,et al.  Switching properties of self-assembled ferroelectric memory cells , 1999 .

[38]  R. Scholz,et al.  Ferroelectric epitaxial nanocrystals obtained by a self-patterning method , 2003 .

[39]  B. C. Chakoumakos,et al.  Superconductivity in SrCuO2-BaCuO2 Superlattices: Formation of Artificially Layered Superconducting Materials , 1994, Science.

[40]  M. Kawasaki,et al.  Nonlinear magneto-optical kerr rotation of an oxide superlattice with artificially broken symmetry , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[41]  M. Cantoni,et al.  Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices. , 2005, Physical review letters.

[42]  D. Norton,et al.  Antiferroelectric behavior in symmetric KNbO(3)/KTaO(3) superlattices. , 2002, Physical review letters.

[43]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[44]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[45]  John B. Pendry,et al.  Low-Energy Electron Diffraction , 1990 .

[46]  J. Speck,et al.  Microstructural instability in single-crystal thin films , 1996 .

[47]  Chang-Beom Eom,et al.  Size effects in ultrathin epitaxial ferroelectric heterostructures , 2004 .

[48]  R. Waser,et al.  Ultrathin epitaxial ferroelectric films grown on compressive substrates: Competition between the surface and strain effects , 2001, cond-mat/0111218.

[49]  A. E. Feuersanger,et al.  Preparation and Properties of Thin Barium Titanate Films , 1964 .

[50]  S. Desu,et al.  Mechanism of Fatigue in Ferroelectric Thin Films , 1992 .

[51]  J. Spanier,et al.  Single‐Crystalline Barium Titanate Nanowires , 2003 .

[52]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[53]  S. Phillpot,et al.  Ferroelectric properties of KNbO3/KTaO3 superlattices by atomic-level simulation , 2001 .

[54]  F. G. Shin,et al.  Time-dependent space-charge-limited conduction as a possible origin of the polarization offsets observed in compositionally graded ferroelectric films , 2004 .

[55]  L. Bellaiche,et al.  Ferroelectricity in barium titanate quantum dots and wires. , 2003, Physical review letters.

[56]  X. Pan,et al.  Abrupt PbTiO3/SrTiO3 superlattices grown by reactive molecular beam epitaxy , 1999 .

[57]  J. Scott,et al.  Orthorhombic strontium titanate in BaTiO3 –SrTiO3 superlattices , 2003 .

[58]  S. Phillpot,et al.  Ferroelectric phase transitions and dynamical behavior in KNbO3/KTaO3 superlattices by molecular-dynamics simulation , 2002 .

[59]  R. Waser,et al.  Scaling of structure and electrical properties in ultrathin epitaxial ferroelectric heterostructures , 2006 .

[60]  J. Slack,et al.  Electrical properties of flash evaporated ferroelectric BaTiO3 thin films , 1971 .

[61]  T. Makino,et al.  Epitaxial growth and dielectric properties of (111) oriented BaTiO3/SrTiO3 superlattices by pulsed-laser deposition , 2000 .

[62]  M. Marssi,et al.  Ferroelectric PbTiO 3 / B a T i O 3 superlattices: Growth anomalies and confined modes , 2000 .

[63]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[64]  L. Eric Cross,et al.  Dimension and Size Effects in Ferroelectrics , 1997 .

[65]  K. Saito,et al.  Artificial ferroelectricity in perovskite superlattices , 2004 .

[66]  B. Jiang,et al.  Phase transition in PbTiO3 ultrafine particles of different sizes , 1993 .

[67]  Sebastian Doniach,et al.  Synchrotron Radiation Research , 1978, Springer US.

[68]  A. Munkholm,et al.  Antiferrodistortive reconstruction of the PbTiO(3)(001) surface. , 2001, Physical review letters.

[69]  D. R. Tilley,et al.  Landau theory of phase transitions in thick films , 1984 .

[70]  J. Triscone,et al.  Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O3 thin films , 1998 .

[71]  R. Waser,et al.  Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity , 2002 .

[72]  V. Murthy,et al.  Structural investigations on Pb(ZrxT1−x)O3 solid solutions using the X-ray Rietveld method , 2000 .

[73]  D. Norton,et al.  The growth and properties of epitaxial KNbO3 thin films and KNbO3/KTaO3 superlattices , 1996 .

[74]  Ralf B. Wehrspohn,et al.  Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate , 2003 .

[75]  B. Jiang,et al.  Size effects on ferroelectricity of ultrafine particles of PbTiO3 , 2000 .

[76]  J F Scott,et al.  Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions , 2003 .

[77]  V. Janovec On the theory of the coercive field of single-domain crystals of BaTiO3 , 1958 .

[78]  Ronald E. Cohen,et al.  Origin of ferroelectricity in perovskite oxides , 1992, Nature.

[79]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[80]  Tae Won Noh,et al.  Polarization Relaxation Induced by a Depolarization Field in Ultrathin Ferroelectric BaTiO 3 Capacitors , 2005 .

[81]  S. Ballandras,et al.  A Novel High Frequency Surface Acoustic Wave Device Based on Piezoelectric Interdigital Transducers , 2004 .

[82]  Jeffrey B. Neaton,et al.  First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion , 2005 .

[83]  A. Rappe,et al.  Stabilization of monodomain polarization in ultrathin PbTiO3 films. , 2006, Physical review letters.

[84]  Hongkun Park,et al.  Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy , 2002 .

[85]  James F. Scott,et al.  Thickness independence of true phase transition temperatures in barium strontium titanate films , 2004 .

[86]  James F. Scott,et al.  A model for fatigue in ferroelectric perovskite thin films , 2000 .

[87]  I. P. Batra,et al.  Depolarization Field and Stability Considerations in Thin Ferroelectric Films , 1973 .

[88]  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[89]  C. Murray,et al.  Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. , 2001, Journal of the American Chemical Society.

[90]  Meyer,et al.  Compositional inversion symmetry breaking in ferroelectric perovskites , 2000, Physical review letters.

[91]  M. Hove,et al.  Multiple scattering of electrons in solids and molecules: A cluster-model approach , 2001 .

[92]  Rainer Waser,et al.  Nanosize ferroelectric oxides – tracking down the superparaelectric limit , 2005 .

[93]  Y. Venevtsev,et al.  Ferroelectric vacuum deposits of complex oxide type structure , 1974 .

[94]  R. Holmestad,et al.  Imaging of out-of-plane interfacial strain in epitaxial PbTiO3/SrTiO3 thin films , 2005 .

[95]  D. Blank,et al.  Materials science: Build your own superlattice , 2005, Nature.

[96]  U. Gösele,et al.  Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites , 2004, Nature materials.

[97]  F. Morrison,et al.  LETTER TO THE EDITOR: High aspect ratio piezoelectric strontium bismuth tantalate nanotubes , 2003 .

[98]  J. Melngailis,et al.  Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films , 1999 .

[99]  T. Makino,et al.  Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with “asymmetric” structure , 2002 .

[100]  R. Nelmes,et al.  The crystal structure of tetragonal PbTiO3 at room temperature and at 700 K , 1985 .

[101]  Leslie E. Cross,et al.  SIZE EFFECTS IN NANOSTRUCTURED FERROELECTRICS , 1996 .

[102]  H. F. Kay,et al.  Thickness dependence of the nucleation field of triglycine sulphate , 1962 .

[103]  Hidekazu Tanaka,et al.  FORMATION OF ARTIFICIAL BATIO3/SRTIO3 SUPERLATTICES USING PULSED LASER DEPOSITION AND THEIR DIELECTRIC PROPERTIES , 1994 .

[104]  U. V. Waghmare,et al.  Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3 , 1997 .

[105]  Yudin,et al.  Intrinsic ferroelectric coercive field , 2000, Physical review letters.

[106]  Kurt Binder,et al.  Surface effects on phase transitions in ferroelectrics and dipolar magnets , 1979 .

[107]  W. F. Egelhoff X-Ray photoelectron and auger electroo forward scattering: A new tool for surface crystallography , 1990 .