Finite line-transitive linear spaces: Theory and search strategies

The paper summarises existing theory and classifications for finite line-transitive linear spaces, develops the theory further, and organises it in a way that enables its effective application. The starting point is a theorem of Camina and the fifth author that identifies three kinds of line-transitive automorphism groups of linear spaces. In two of these cases the group may be imprimitive on points, that is, the group leaves invariant a nontrivial partition of the point set. In the first of these cases the group is almost simple with point-transitive simple socle, and may or may not be point-primitive, while in the second case the group has a non-trivial point-intransitive normal subgroup and hence is definitely point-imprimitive. The theory presented here focuses on point-imprimitive groups. As a non-trivial application a classification is given of the point-imprimitive, line-transitive groups, and the corresponding linear spaces, for which the greatest common divisor gcd(k, v − 1) ≤ 8, where v is the number of points, and k is the line size. Motivation for this classification comes from a result of Weidong Fang and Huiling Li in 1993, that there are only finitely many non-trivial point-imprimitive, line-transitive linear spaces for a given value of gcd(k, v −1). The classification strengthens the classification by Camina and Mischke under the much stronger restriction k ≤ 8: no additional examples arise. The paper provides the backbone for future computer-based classifications of point-imprimitive, line-transitive linear spaces with small parameters. Several suggestions for further investigations are made.

[1]  L. Dickson Group Theory: 6 , 1904 .

[2]  M. Hall Uniqueness of the projective plane with 57 points , 1953 .

[3]  M. Hall Correction to “Uniqueness of the projective plane with 57 points.” , 1954 .

[4]  D. G. Higman,et al.  Geometric $ABA$-groups , 1961 .

[5]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[6]  R. Block On the orbits of collineation groups , 1967 .

[7]  R. Block On automorphism groups of block designs , 1968 .

[8]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .

[9]  D. Gorenstein Finite Simple Groups: An Introduction to Their Classification , 1982 .

[10]  A. Camina,et al.  Block Transitive Automorphism Groups of Designs , 1984 .

[11]  William M. Kantor,et al.  Homogeneous Designs and Geometric Lattices , 1985, J. Comb. Theory A.

[12]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[13]  M. Liebeck,et al.  Primitive Permutation Groups Containing an Element of Large Prime Order , 1985 .

[14]  A. Delandtsheer Flag — transitive finite simple groups , 1986 .

[15]  W. Kantor Primitive permutation groups of odd degree, and an application to finite projective planes , 1987 .

[16]  Anne Delandtsheer,et al.  Line-primitive Automorphism Groups of Finite Linear Spaces , 1989, Eur. J. Comb..

[17]  Alan R. Camina,et al.  Block transitive automorphism groups of 2-(nu, k, 1) block designs , 1989, J. Comb. Theory, Ser. A.

[18]  J. Doyen,et al.  Most block-transitivet-designs are point-primitive , 1989 .

[19]  P. B. Kleidman,et al.  Linear spaces with flag-transitive automophism groups , 1990 .

[20]  Cheryl E. Praeger,et al.  Block-transitive, point-imprimitive designs with lambda = 1 , 1993, Discret. Math..

[21]  A. Camina,et al.  Line-transitive Automorphism Groups of Linear Spaces , 1995 .

[22]  Alan R. Camina,et al.  Line-transitive Automorphism Groups of Linear Spaces , 1993, Electron. J. Comb..

[23]  J. Dixon,et al.  Permutation Groups , 1996 .

[24]  M. Bhattacharjee Notes on Infinite Permutation Groups , 1997 .

[25]  Martin W. Liebeck,et al.  The Classification of Finite Linear Spaces with Flag-Transitive Automorphism Groups of Affine Type , 1998, J. Comb. Theory, Ser. A.

[26]  A. Camina,et al.  Sporadic groups and automorphisms of linear spaces , 2000 .

[27]  C. Praeger,et al.  Line-transitive, point quasiprimitive automorphism groups of finite linear spaces are affine or almost simple , 2001 .

[28]  Weijun Liu,et al.  Line-Primitive 2-(v, k, 1) Designs with k/(k, v)<=10 , 2001, J. Comb. Theory, Ser. A.

[29]  Anton Betten,et al.  Algebraic Combinatorics and Applications : Proceedings , 2001 .

[30]  A. Delandtsheer Finite Flag-transitive Linear Spaces with Alternating Socle , 2001 .

[31]  Jan Saxl,et al.  On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups , 2002, J. Comb. Theory, Ser. A.

[32]  Weijun Liu Suzuki groups and automorphisms of finite linear spaces , 2003, Discret. Math..

[33]  Weijun Liu Finite linear spaces admitting a projective group PSU(3 ,q )with q even , 2003 .

[34]  P. M. Neumann,et al.  Alternating Groups Acting on Finite Linear Spaces , 2003 .

[35]  Cheryl E. Praeger,et al.  Inequalities involving the Delandtsheer-Doyen parameters for finite line-transitive linear spaces , 2003, J. Comb. Theory, Ser. A.

[36]  Weijun Liu Finite linear spaces admitting a two-dimensional projective linear group , 2003, J. Comb. Theory, Ser. A.

[37]  Alice C. Niemeyer,et al.  Finite line-transitive linear spaces: parameters and normal point-partitions , 2003 .

[38]  Alice C. Niemeyer,et al.  On a theorem of Wielandt for finite primitive permutation groups , 2003 .

[39]  Cheryl E. Praeger,et al.  The block-transitive, point-imprimitive 2-(729, 8, 1) designs , 1992, Applicable Algebra in Engineering, Communication and Computing.

[40]  Cheryl E. Praeger,et al.  A search algorithm for line-transitive, point-imprimitive linear spaces , 2005 .

[41]  Weijun Liu,et al.  Almost simple groups with socle Ree(q) acting on finite linear spaces , 2006, Eur. J. Comb..

[42]  N. Gill Transitive projective planes , 2006, math/0603266.

[43]  Nick Gill,et al.  Nilpotent Singer Groups , 2006, Electron. J. Comb..

[44]  A. Camina,et al.  Large dimensional classical groups and linear spaces , 2007, math/0701258.

[45]  N. Gill $PSL(3,q)$ and line-transitive linear spaces , 2006, math/0603293.

[46]  Cheryl E. Praeger,et al.  Classification of line-transitive point-imprimitive linear spaces with line size at most 12 , 2007, Des. Codes Cryptogr..

[47]  C. Praeger,et al.  Line-transitive, point-imprimitive linear spaces: the grid case , 2008 .