Simultaneous dictionary learning and denoising for seismic data

We evaluated a dictionary learning (DL) method for seismic-data denoising. The data were divided into smaller patches, and a dictionary of patch-size atoms was learned. The DL method offers a more flexible framework to adaptively construct sparse data representation according to the seismic data themselves. The representation being learned from the data, did not rely on a guess of the data morphology like standard wavelet or curvelet transforms. The method could learn a dictionary and denoise seismic data, whether simultaneously or in two distinctive steps. Empirical study on field data showed promising denoising performance of the presented method in terms of signal-to-noise ratio and weak-feature preservation, in comparison with wavelets, curvelets, anisotropic total variation, and nonlocal total variation.

[1]  Mauricio D. Sacchi,et al.  Denoising seismic data using the nonlocal means algorithm , 2012 .

[2]  Mauricio D. Sacchi,et al.  Sparse Coding For Data-driven Coherent And Incoherent Noise Attenuation , 2009 .

[3]  Yangkang Chen,et al.  Double Sparsity Dictionary for Seismic Noise Attenuation , 2016 .

[4]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[5]  R. Neelamani,et al.  Coherent and random noise attenuation using the curvelet transform , 2008 .

[6]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[7]  T. Ulrych,et al.  Physical Wavelet Frame Denoising , 2003 .

[8]  S. Trickett F-xy eigenimage noise suppression , 2003 .

[9]  Walter Söllner,et al.  Dictionary learning for signal-to-noise ratio enhancement , 2015 .

[10]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[11]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[12]  J. Fadili,et al.  SZ and CMB reconstruction using generalized morphological component analysis , 2007, 0712.0588.

[13]  J.-L. Starck,et al.  Sparse component separation for accurate cosmic microwave background estimation , 2012, 1206.1773.

[14]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[15]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[16]  Alfred Hanssen,et al.  Sparse code shrinkage for signal enhancement of seismic data , 2011 .

[17]  Gerlind Plonka-Hoch,et al.  A New Sparse Representation of Seismic Data Using Adaptive Easy-Path Wavelet Transform , 2010, IEEE Geoscience and Remote Sensing Letters.

[18]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[19]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[20]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[21]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[22]  Gerlind Plonka-Hoch,et al.  The Curvelet Transform , 2010, IEEE Signal Processing Magazine.

[23]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[24]  Laurent Jacques,et al.  A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity , 2011, Signal Process..

[25]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[26]  Mohamed-Jalal Fadili,et al.  Learning the Morphological Diversity , 2010, SIAM J. Imaging Sci..

[27]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.