Lipschitzian Stability in Optimization: The Role of Nonsmooth Analysis

The motivations of nonsmooth analysis are discussed. Applications are given to the sensitivity of optimal values, the interpretation of Lagrange multipliers, and the stability of constraint systems under perturbation.

[1]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[2]  R. Rockafellar Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming , 1982 .

[3]  R. Tyrrell Rockafellar,et al.  Monotone processes of convex and concave type , 1967 .

[4]  V. N. Malozemov,et al.  ON THE THEORY OF NON-LINEAR MINIMAX PROBLEMS , 1971 .

[5]  R. Rockafellar,et al.  Lipschitzian properties of multifunctions , 1985 .

[6]  R. Rockafellar Directional differentiability of the optimal value function in a nonlinear programming problem , 1984 .

[7]  R. Rockafellar,et al.  Clarke's tangent cones and the boundaries of closed sets in Rn , 1979 .

[8]  Frank H. Clarke,et al.  A New Approach to Lagrange Multipliers , 1976, Math. Oper. Res..

[9]  J. Hiriart-Urruty Refinements of necessary optimality conditions in nondifferentiable programming II , 1979 .

[10]  F. Clarke Generalized gradients and applications , 1975 .

[11]  R. Rockafellar,et al.  Maximal monotone relations and the second derivatives of nonsmooth functions , 1985 .

[12]  Jean-Pierre Aubin,et al.  Lipschitz Behavior of Solutions to Convex Minimization Problems , 1984, Math. Oper. Res..

[13]  R. Rockafellar Extensions of subgradient calculus with applications to optimization , 1985 .

[14]  Jacques Gauvin,et al.  The Generalized Gradient of a Marginal Function in Mathematical Programming , 1979, Math. Oper. Res..

[15]  R. Rockafellar The theory of subgradients and its applications to problems of optimization : convex and nonconvex functions , 1981 .