Sperner Properties for Groups and Relations

An equivalence on the family of subsets of an e-element set E is hereditary if |a| = |b| and | x {⊆ a : x ∼}|=| x {⊆ b : x ∼}| whenever a , b , c , ⊂ E and a ˜ b. Let W i ˜ denote the number of blocks of ˜ consisting of i -element sets. Setting e =⌊1/2 e ⌋ we prove W 0 ~ ≤ ⋯ ≤ W e ~ and W p ~ ≤ W e − p ~ for all p ≼ e ′. The equivalence ˜ is symmetric ( is selfdual ) if W p ~ = W e − p ~ for all p (if a ∼ b ⇔ E \ a ∼ E \ b ). We prove ˜ is symmetric if ˜ is selfdual. The set of blocks of ˜ has a natural order with X ≼ Y if x ⊆ y for some x ∈ X and y ∈ Y . We study the properties of this order, in particular, we prove that for ˜ symmetric the order has the strong Sperner property: for all k the union of the k largest levels is a maximum sized k-family (i.e. a maximum sized union of k antichains). For a permutation group G on E put a ˜ G b if b = g(a) for some g ∈ G . This set-orbit partition is symmetric and therefore the associated order has the strong Sperner property. A direct application proves that the following finite orders have the strong Sperner property: (a) product of chains ( De Bruijn et al., 1949 ) and (b) the initial segments of the product of two chains ( Stanley, 1980 ). Another consequence is that among the unlabelled graphs on n vertices the graphs with ⌊ 1 2 ( n 2 ) Ȱ edges form a maximum sized family allowing no embedding (as a subgraph) between its members. For a binary relation R set a ˜ R b if R ⋂ a 2 (i.e. the restriction of R to the set a ) is isomorphic to R ⋂ b 2 . This equivalence is hereditary. Its equivalence classes are essentially the isomorphism types of restrictions of R and the above order is the usual embedability order of isomorphism types. A consequence of the main result is that for a homogeneous R the order has the strong Sperner property.

[1]  Ascher Wagner,et al.  Transitivity of finite permutation groups on unordered sets , 1965 .

[2]  Bernt Lindström,et al.  A Partition of L(3, n) into Saturated Symmetric Chains , 1980, Eur. J. Comb..

[3]  Helmut Wielandt Endlichek-homogene Permutationsgruppen , 1967 .

[4]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[5]  Maurice Pouzet,et al.  Application de la Notion de Relation Presque-Enchainable au Denombrement des Restrictions Finies D'une Relation , 1981, Math. Log. Q..

[6]  Claude Frasnay,et al.  Quelques problèmes combinatoires concernant les ordres totaux et les relations monomorphes , 1965 .

[7]  E. Sperner Ein Satz über Untermengen einer endlichen Menge , 1928 .

[8]  de Ng Dick Bruijn,et al.  On the set of divisors of a number , 1951 .

[9]  Note on a theorem of Livingstone and Wagner , 1967 .

[10]  D. Lubell A Short Proof of Sperner’s Lemma , 1966 .

[11]  Jerrold R. Griggs,et al.  On Chains and Sperner k-Families in Ranked Posets, II , 1980, J. Comb. Theory, Ser. A.

[12]  Ronald D. Bercov,et al.  Permutation groups on unordered sets , 1970 .

[13]  Richard P. Stanley,et al.  Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.

[14]  William M. Kantor,et al.  On incidence matrices of finite projective and affine spaces , 1972 .

[15]  Douglas B. West,et al.  A Symmetric Chain Decomposition of L(4, n) , 1979, Eur. J. Comb..

[16]  Michael Saks A short proof of the existence of k-saturated partitions of partially ordered sets , 1979 .

[17]  K. A. Baker,et al.  A generalization of Sperner's lemma , 1969 .

[18]  Ralph FREESE An application of dilworth's lattice of maximal antichains , 1974, Discret. Math..

[19]  Daniel J. Kleitman,et al.  The Structure of Sperner k-Families , 1976, J. Comb. Theory, Ser. A.

[20]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[21]  Curtis Greene Some Partitions Associated with a Partially Ordered Set , 1976, J. Comb. Theory, Ser. A.

[22]  M. Pouzet,et al.  Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations , 1976 .