Multiscale Poisson data smoothing

Summary.  The paper introduces a framework for non‐linear multiscale decompositions of Poisson data that have piecewise smooth intensity curves. The key concept is conditioning on the sum of the observations that are involved in the computation of a given multiscale coefficient. Within this framework, most classical wavelet thresholding schemes for data with additive homoscedastic noise can be used. Any family of wavelet transforms (orthogonal, biorthogonal or second generation) can be incorporated in this framework. Our second contribution is to propose a Bayesian shrinkage approach with an original prior for coefficients of this decomposition. As such, the method combines the advantages of the Haar–Fisz transform with wavelet smoothing and (Bayesian) multiscale likelihood models, with additional benefits, such as extendability towards arbitrary wavelet families. Simulations show an important reduction in average squared error of the output, compared with the present techniques of Anscombe or Fisz variance stabilization or multiscale likelihood modelling.

[1]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[2]  M. Fisz The limiting distribution of a function of two independent random variables and its statistical application , 1955 .

[3]  C. Morris Natural Exponential Families with Quadratic Variance Functions: Statistical Theory , 1983 .

[4]  Charles A. Micchelli,et al.  Multivariate splines: a probabilistic perspective , 1986 .

[5]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[6]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[7]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[8]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[9]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[10]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[11]  Eric D. Kolaczyk Estimation of Intensities of Burst-Like Poisson Processes Using Haar Wavelets , 1996 .

[12]  E. Kolaczyk Nonparametric Estimation of Gamma-Ray Burst Intensities Using Haar Wavelets , 1997 .

[13]  H. Chipman,et al.  Adaptive Bayesian Wavelet Shrinkage , 1997 .

[14]  B. Silverman,et al.  Wavelet thresholding via a Bayesian approach , 1998 .

[15]  S. Mallat A wavelet tour of signal processing , 1998 .

[16]  Hong-Ye Gao,et al.  Wavelet Shrinkage Denoising Using the Non-Negative Garrote , 1998 .

[17]  Robert D. Nowak,et al.  Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..

[18]  E. Kolaczyk Bayesian Multiscale Models for Poisson Processes , 1999 .

[19]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[20]  A. Antoniadis,et al.  Wavelet shrinkage for natural exponential families with quadratic variance functions , 2001 .

[21]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .

[22]  Anestis Antoniadis,et al.  Wavelet shrinkage for natural exponential families with cubic variance functions , 2001 .

[23]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[24]  Robert Nowak,et al.  Multiscale Statistical Models , 2003 .

[25]  Catherine Charles,et al.  Wavelet denoising of Poisson-distributed data and applications , 2003, Comput. Stat. Data Anal..

[26]  P. Tseng,et al.  Automatic Smoothing With Wavelets for a Wide Class of Distributions , 2004 .

[27]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[28]  P. Besbeas,et al.  A Comparative Simulation Study of Wavelet Shrinkage Estimators for Poisson Counts , 2004 .

[29]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[30]  R. Nowak,et al.  Multiscale likelihood analysis and complexity penalized estimation , 2004, math/0406424.

[31]  Robert Nowak,et al.  Multiscale generalised linear models for nonparametric function estimation , 2005 .