The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins.

Extremely high frequencies of the A nucleotide are found in the RNA genomes of the lentivirus group of retroviruses. It is presently unknown what molecular force is responsible for this A-pressure. In this manuscript, we demonstrate a correlation between this 'A-pressure' and the amino acid-usage of the lentivirus family. We compared the amino acid composition of the Gag and Pol proteins of the human immunodeficiency viruses type 1 and 2 (HIV-1 and HIV-2) with that of the second group of human retroviruses; the human T-cell leukemia viruses type I and II (HTLV-I and HTLV-II). Differences in total amino acid content correlate with the preference for A-rich codons in the HIV genome. A pair-wise comparison of homologous amino acid positions in the Pol proteins indicates that both conservative and non-conservative changes can be accounted for by this A-bias. The putative molecular mechanism underlying this A-pressure and the evolutionary consequences are discussed.