Peak forces in high-resolution imaging of soft matter in liquid.

The maximum force exerted by the tip of a force microscope on the sample surface is a critical factor that determines the spatial resolution and the degree of invasiveness of the measurement, in particular, on soft materials. Here we determine the conditions needed to image soft matter in the 30-500 MPa range while applying very small forces. Imaging at sub-50 pN in the elastic regime can only be achieved under strict conditions in terms of force constant values (below 0.1 N/m) and free amplitudes (below 2 nm). The peak force depends on the operational parameters, probe properties, the elastic and/or viscoelastic response of the sample, and the contact mechanics model. Images of heterogeneous samples are never taken at a constant peak force. Under the same operational conditions, smaller forces are obtained on the more compliant materials. We also find that the viscoelastic response reduces the peak force with respect to the purely elastic regions. Our findings are summarized in three-dimensional maps that contain the operational conditions for imaging at low forces.

[1]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[2]  Christopher Hein,et al.  High-speed atomic force microscopy reveals rotary catalysis of rotor-less F 1 -ATPase , 2011 .

[3]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[4]  Arvind Raman,et al.  Inverting amplitude and phase to reconstruct tip–sample interaction forces in tapping mode atomic force microscopy , 2008, Nanotechnology.

[5]  Ricardo Garcia,et al.  Frequency response of an atomic force microscope in liquids and air: Magnetic versus acoustic excitation , 2007 .

[6]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[7]  J. Font,et al.  How localized are energy dissipation processes in nanoscale interactions? , 2011, Nanotechnology.

[8]  J. Legleiter,et al.  The effect of set point ratio and surface Young’s modulus on maximum tapping forces in fluid tapping mode atomic force microscopy , 2010 .

[9]  Hiroyuki Noji,et al.  High-Speed Atomic Force Microscopy Reveals Rotary Catalysis of Rotorless F1-ATPase , 2011, Science.

[10]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[11]  A. Ikai The world of nano-biomechanics , 2007 .

[12]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[13]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[14]  A. Katan,et al.  Quantitative force versus distance measurements in amplitude modulation AFM: a novel force inversion technique , 2009, Nanotechnology.

[15]  Ricardo Garcia,et al.  Molecular and nanoscale compositional contrast of soft matter in liquid: interplay between elastic and dissipative interactions. , 2012, ACS nano.

[16]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[17]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[18]  John E. Sader,et al.  Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations , 2005 .

[19]  Roger Proksch,et al.  Magnetic and acoustic tapping mode microscopy of liquid phase phospholipid bilayers and DNA molecules , 2000 .

[20]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[21]  Matteo Chiesa,et al.  A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy. , 2012, The Review of scientific instruments.

[22]  D. Fotiadis,et al.  Quantitative dynamic-mode scanning force microscopy in liquid, , 2006 .

[23]  Arvind Raman,et al.  Accurate force spectroscopy in tapping mode atomic force microscopy in liquids , 2010 .

[24]  Manhee Lee,et al.  General theory of amplitude-modulation atomic force microscopy. , 2006, Physical review letters.

[25]  M. Dong,et al.  Determination of protein structural flexibility by microsecond force spectroscopy. , 2009, Nature nanotechnology.

[26]  S. Solares,et al.  Utilization of simple scaling laws for modulating tip-sample peak forces in atomic force microscopy characterization in liquid environments , 2011 .

[27]  Y. Tatara Extensive Theory of Force-Approach Relations of Elastic Spheres in Compression and in Impact , 1989 .

[28]  Chanmin Su,et al.  Mechanical mapping of single membrane proteins at submolecular resolution. , 2011, Nano letters.

[29]  T. D. Yuzvinsky,et al.  Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam , 2005 .

[30]  Hendrik Hölscher,et al.  Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy , 2006 .

[31]  A. Engel,et al.  Mapping flexible protein domains at subnanometer resolution with the atomic force microscope , 1998, FEBS letters.

[32]  Yang Gan,et al.  Atomic and subnanometer resolution in ambient conditions by atomic force microscopy , 2009 .

[33]  E. Nauman,et al.  Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy. , 2011, Nature nanotechnology.

[34]  Large Deformations of a Rubber Sphere under Diametral Compression : Part 2 : Experiments on Many Rubber Materials and Comparisons of Theories with Experiments , 1993 .

[35]  Arvind Raman,et al.  Analytical formulas and scaling laws for peak interaction forces in dynamic atomic force microscopy , 2007 .

[36]  Henning Stahlberg,et al.  Characterization of the motion of membrane proteins using high-speed atomic force microscopy. , 2012, Nature nanotechnology.

[37]  Ricardo Garcia,et al.  Amplitude Modulation Atomic Force Microscopy , 2010 .

[38]  Tomasz Kowalewski,et al.  Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[40]  J. Gómez‐Herrero,et al.  Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. , 2011, Physical review letters.

[41]  Xin Xu,et al.  Compositional contrast of biological materials in liquids using the momentary excitation of higher eigenmodes in dynamic atomic force microscopy. , 2009, Physical review letters.

[42]  J. Sader,et al.  Frequency modulation atomic force microscopy reveals individual intermediates associated with each unfolded I27 titin domain. , 2006, Biophysical journal.

[43]  J. Hobbs,et al.  Direct imaging of polyethylene films at single-chain resolution with torsional tapping atomic force microscopy. , 2011, Physical review letters.

[44]  S. Maeda,et al.  Frequency shift feedback imaging in liquid for biological molecules , 2003 .

[45]  Xin Xu,et al.  Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids. , 2008, Biophysical journal.

[46]  Á. S. Paulo,et al.  High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. , 2000, Biophysical journal.

[47]  K. Matsushige,et al.  Molecular Resolution Imaging of Protein Molecules in Liquid Using Frequency Modulation Atomic Force Microscopy , 2009 .

[48]  Hans-Jürgen Butt,et al.  Surface and Interfacial Forces , 2010 .