Synchronization in the Genesio-Tesi and Coullet system using a fractional-order adaptive controller

An adaptive fractional-order controller has been designed for synchronization in a pair of topologically inequivalent systems, the Genesio-Tesi and Coullet systems. This controller is a fractional PID controller, which the coefficients will be tuned according to a proper adaptation mechanism. PID coefficients are updated using the gradient method when a proper sliding surface is chosen. The stability of the closed-loop PID control system is also guaranteed. The simulation results indicate the significance of the proposed controller as a control signal.

[1]  Julien Clinton Sprott,et al.  Chaos in fractional-order autonomous nonlinear systems , 2003 .

[2]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[3]  Yaghoub Heidari,et al.  Adaptive Robust Pid Controller Design Based On A Sliding Mode For Uncertain Chaotic Systems , 2012 .

[4]  Mohammad Saleh Tavazoei,et al.  Determination of active sliding mode controller parameters in synchronizing different chaotic systems , 2007 .

[5]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[6]  Guanrong Chen,et al.  A note on the fractional-order Chen system , 2006 .

[7]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[8]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[9]  Vicente Feliú Batlle,et al.  Fractional order control strategies for power electronic buck converters , 2006, Signal Process..

[10]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[11]  Jinhu Lu,et al.  Controlling uncertain Lü system using linear feedback , 2003 .

[12]  Yuan Kang,et al.  Chaos in the Newton–Leipnik system with fractional order , 2008 .

[13]  Ju H. Park,et al.  A novel criterion for delayed feedback control of time-delay chaotic systems , 2005 .

[14]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[15]  Xiaoqun Wu,et al.  Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems , 2005 .

[16]  Junguo Lu Chaotic dynamics of the fractional-order Lü system and its synchronization , 2006 .

[17]  I. Podlubny Fractional differential equations , 1998 .

[18]  Ju H. Park Stability criterion for synchronization of linearly coupled unified chaotic systems , 2005 .

[19]  José António Tenreiro Machado,et al.  Fractional-order hybrid control of robot manipulators , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[20]  Chi-Chuan Hwang,et al.  A linear continuous feedback control of Chua's circuit , 1997 .

[21]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[22]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[23]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[24]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[25]  Alain Arneodo,et al.  Possible new strange attractors with spiral structure , 1981 .

[26]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[27]  Jun-Guo Lu,et al.  Chaotic dynamics and synchronization of fractional-order Arneodo’s systems , 2005 .

[28]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .