Design Guidelines in Nonconventional Composite Laminate Optimization

Nonconventional laminates, as defined in this paper, are laminates where ply angles are not restricted to a finite set: for example 0, 45, −45 and 90 deg. Removing this restriction, structural behavior (for example, postimpact behavior) can be significantly improved. Nonconventional laminates are made of straight or steered fibers leading to constant- or variable-stiffness composites. In traditional composite design, empirical guidelines are imposed, guaranteeing the robustness of the composite. This paper presents a method to take design guidelines into account during nonconventional laminate optimization. The 10% rule is interpreted as a lower bound on the degree of isotropy and formulated as a positive-semidefinite matrix constraint. Other guidelines are interpreted as bounds on ply angle or angle difference, or the number of variables is reduced by fixing variables to user-defined values. Numerical results optimizing a plate under biaxial tension for strength demonstrate the optimizer generates noncon...

[1]  Zafer Gürdal,et al.  Design of variable stiffness panels for maximum strength using lamination parameters , 2011 .

[2]  Yongcun Zhang,et al.  A two-step optimization scheme for maximum stiffness design of laminated plates based on lamination parameters , 2012 .

[3]  Roeland De Breuker,et al.  Aeroelastic tailoring using lamination parameters , 2010 .

[4]  Samuel T. IJsselmuiden,et al.  Design of variable-stiffness composite panels for maximum buckling load , 2009 .

[5]  Paul M. Weaver,et al.  Optimal postbuckling design of variable angle tow composites using lamination parameters , 2015 .

[6]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[7]  Zafer Gürdal,et al.  Optimization of Variable-Stiffness Panels for Maximum Buckling Load Using Lamination Parameters , 2010 .

[8]  Stephen W. Tsai,et al.  An invariant-based theory of composites , 2014 .

[9]  Zafer Gürdal,et al.  Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations , 2009 .

[10]  Zafer Gürdal,et al.  Stiffness Optimization of Composite Wings with Aeroelastic Constraints , 2013 .

[11]  Z. Gürdal,et al.  In-plane response of laminates with spatially varying fiber orientations - Variable stiffness concept , 1993 .

[12]  Zafer Gürdal,et al.  Implementation of Strength-Based Failure Criteria in the Lamination Parameter Design Space , 2007 .

[13]  Z. Gürdal,et al.  Design of variable-stiffness conical shells for maximum fundamental eigenfrequency , 2008 .

[14]  Masha Sosonkina,et al.  Stacking sequence optimization for constant stiffness laminates based on a continuous optimization approach , 2012 .

[15]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[16]  Steven A Herrera,et al.  Bio-inspired impact-resistant composites. , 2014, Acta biomaterialia.

[17]  Michael W. Hyer,et al.  Innovative design of composite structures: The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes , 1990 .

[18]  Brian Tatting,et al.  Tow-Placement Technology and Fabrication Issues for Laminated Composite Structures , 2005 .

[19]  R. Haftka,et al.  Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm , 1993 .

[20]  G. N. Vanderplaats,et al.  An improved approximation for stress constraints in plate structures , 1993 .

[21]  Francesco Aymerich,et al.  Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO)metaheuristic , 2008 .

[22]  Carl T. Herakovich,et al.  On the Relationship between Engineering Properties and Delamination of Composite Materials , 1981 .

[23]  Martin P. Bendsøe,et al.  Parametrization in Laminate Design for Optimal Compliance , 1997 .

[24]  Claude Fleury,et al.  CONLIN: An efficient dual optimizer based on convex approximation concepts , 1989 .

[25]  Zafer Gurdal,et al.  Formulation of Composite Laminate Robustness Constraint in Lamination Parameters Space , 2009 .

[26]  Zafer Gürdal,et al.  Stacking Sequence Dispersion and Tow-Placement for Improved Damage Tolerance , 2008 .

[27]  S. Grihon,et al.  A constraint satisfaction programming approach for computing manufacturable stacking sequences , 2014 .

[28]  Z. Gürdal,et al.  Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters , 2007 .

[29]  Paul M. Weaver,et al.  Optimisation of Anisotropic Composite Plates Incorporating Non-Conventional Ply Orientations , 2008 .

[30]  R. Le Riche,et al.  Evolutionary Optimization , 2012, Variants of Evolutionary Algorithms for Real-World Applications.

[31]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part I: Constant stiffness design , 2009 .

[32]  Yoshihiro Narita,et al.  Discrete Optimization for Vibration Design of Composite Plates by Using Lamination Parameters , 2009 .

[33]  Christian Zillober,et al.  A Combined Convex Approximation—Interior Point Approach for Large Scale Nonlinear Programming , 2001 .

[34]  D. Peeters,et al.  Stacking sequence optimisation of variable stiffness laminates with manufacturing constraints , 2015 .

[35]  E. V. González,et al.  Damage resistance and damage tolerance of dispersed CFRP laminates: Design and optimization , 2013 .

[36]  Zafer Gürdal,et al.  Multi-step blended stacking sequence design of panel assemblies with buckling constraints , 2009 .