Nanoscale and edge effect on electronic properties of graphene

Abstract A brief review is given on nanoscale and edge effect on electronic properties of graphene from theoretical point of view. The presence of edges in graphene has strong implications for low-energy spectrum of the π electrons. The topics include the electronic states of graphene nanoribbons on the basis of tight-binding model, ferrimagnetic edge spin polarization due to the edge states and half-metallic states induced by the electric field effect or edge chemical modification.

[1]  X. Hu,et al.  Ground-state properties of nanographite systems with zigzag edges , 2003, cond-mat/0303159.

[2]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[3]  Yoshiyuki Miyamoto,et al.  First-principles study of edge states of H-terminated graphitic ribbons , 1999 .

[4]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[5]  K. Kudin Zigzag graphene nanoribbons with saturated edges. , 2008, ACS nano.

[6]  A. Reina,et al.  Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons , 2009, Science.

[7]  S. Dutta,et al.  Intrinsic half-metallicity in modified graphene nanoribbons. , 2009, Physical review letters.

[8]  S. Stringari,et al.  Uncertainty principle, quantum fluctuations, and broken symmetries , 1991 .

[9]  M. Rooks,et al.  Graphene nano-ribbon electronics , 2007, cond-mat/0701599.

[10]  T. Nakanishi,et al.  Electronic states of graphene nanoribbons and analytical solutions , 2010, Science and technology of advanced materials.

[11]  S. Dutta,et al.  Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions. , 2007, The journal of physical chemistry. B.

[12]  M. Sigrist,et al.  Edge effect on electronic transport properties of graphene nanoribbons and presence of perfectly conducting channel , 2008, 0809.2648.

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  Zhenyu Li,et al.  Half-metallicity in edge-modified zigzag graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[15]  P. Lambin,et al.  Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. , 2008, Nature nanotechnology.

[16]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[17]  K. Kusakabe,et al.  Magnetic nanographite , 2002, cond-mat/0212391.

[18]  J. Palacios,et al.  Magnetism in graphene nanoislands. , 2007, Physical review letters.

[19]  K. Fukui,et al.  Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy , 2006, cond-mat/0602378.

[20]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[21]  D. Hirashima,et al.  Local Magnetic Moment Formation on Edges of Graphene(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2008 .

[22]  J. Kong,et al.  Anisotropic etching and nanoribbon formation in single-layer graphene. , 2009, Nano letters (Print).

[23]  K. Nakada,et al.  Lattice Distortion in Nanographite Ribbons , 1997 .

[24]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[25]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[26]  Klaus Müllen,et al.  Two-dimensional graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[27]  M. Ezawa Metallic graphene nanodisks: Electronic and magnetic properties , 2007, 0707.0349.

[28]  Magnetic Structure of Nano-Graphite Möbius Ribbon , 2002, cond-mat/0210685.

[29]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[30]  E. Lieb,et al.  Two theorems on the Hubbard model. , 1989, Physical review letters.

[31]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[32]  Gopalan,et al.  Spin ladders with spin gaps: A description of a class of cuprates. , 1993, Physical review. B, Condensed matter.

[33]  C. Stampfer,et al.  Energy gaps in etched graphene nanoribbons. , 2008, Physical review letters.

[34]  Yousuke Kobayashi,et al.  Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy , 2005 .

[35]  C. Berger,et al.  Scalable templated growth of graphene nanoribbons on SiC. , 2010, Nature nanotechnology.

[36]  Takashi Sato,et al.  Coulomb Blockade Oscillations in Narrow Corrugated Graphite Ribbons , 2008 .

[37]  若林 克法 Low-energy physical properties of edge states in Nano-graphites , 2000 .

[38]  Francesco Mauri,et al.  Structure, stability, edge states, and aromaticity of graphene ribbons. , 2008, Physical review letters.

[39]  O. Yazyev Magnetism in disordered graphene and irradiated graphite. , 2008, Physical review letters.

[40]  Fujita,et al.  Electronic structure of graphene tubules based on C60. , 1992, Physical review. B, Condensed matter.

[41]  Wanlin Guo,et al.  Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations , 2008, 1101.3118.

[42]  Shuichi Murakami,et al.  Kohn anomalies in graphene nanoribbons , 2009, 0907.2475.

[43]  C. Stampfer,et al.  Local gating of a graphene Hall bar by graphene side gates , 2007, 0709.2970.

[44]  P. Kim,et al.  Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.

[45]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[46]  P. Wallace The Band Theory of Graphite , 1947 .

[47]  G. Scuseria,et al.  Edge effects in finite elongated graphene nanoribbons , 2007, 0709.3134.

[48]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[49]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[50]  Riichiro Saito,et al.  Berry's Phase and Absence of Back Scattering in Carbon Nanotubes. , 1998 .

[51]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[52]  R. Saito,et al.  Identifying the Orientation of Edge of Graphene Using G band Raman Spectra , 2009, 0911.1593.

[53]  Tsuneya Ando,et al.  Theory of Electronic States and Transport in Carbon Nanotubes , 2005 .

[54]  S. Louie,et al.  Energy gaps in graphene nanoribbons. , 2006, Physical Review Letters.

[55]  M. Sigrist,et al.  Electronic and magnetic properties of nanographite ribbons , 1998, cond-mat/9809260.

[56]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.

[57]  L. Brey,et al.  Electronic and magnetic structure of graphene nanoribbons , 2010 .

[58]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[59]  S. Louie,et al.  Spatially resolving edge states of chiral graphene nanoribbons , 2011, 1101.1141.

[60]  S. Okada,et al.  Edge States and Flat Bands of Graphene Nanoribbons with Edge Modification , 2010 .

[61]  Spin- and charge-polarized states in nanographene ribbons with zigzag edges , 2003, cond-mat/0309600.

[62]  M. I. Katsnelson,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006 .

[63]  Manfred Sigrist,et al.  Spin Wave Mode of Edge-Localized Magnetic States in Nanographite Zigzag Ribbons , 1998 .

[64]  Takashi Takahashi,et al.  Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy , 2006 .

[65]  Phase analysis of quantum oscillations in graphite. , 2004, Physical review letters.