The genome of Xylona heveae provides a window into fungal endophytism.

[1]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[2]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[3]  M. Grynberg,et al.  LTR Retrotransposons in Fungi , 2011, PloS one.

[4]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[5]  J. Latgé,et al.  Hydrophobins—Unique Fungal Proteins , 2012, PLoS pathogens.

[6]  K. Hammond-Kosack,et al.  Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. , 2009, Molecular plant-microbe interactions : MPMI.

[7]  G. Bergstrom,et al.  Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi , 2011, Biotechnology for biofuels.

[8]  Davey L. Jones,et al.  Evidence for host-specificity of culturable fungal root endophytes from the carnivorous plant Pinguicula vulgaris (Common Butterwort) , 2012, Mycological Progress.

[9]  H. Koga,et al.  Surface α-1,3-Glucan Facilitates Fungal Stealth Infection by Interfering with Innate Immunity in Plants , 2012, PLoS pathogens.

[10]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[11]  Bernard Henrissat,et al.  Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. , 2006, Protein engineering, design & selection : PEDS.

[12]  R. Gazis,et al.  Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin , 2011, Mycologia.

[13]  Md. Sharifur Rahman,et al.  Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina , 2012, BMC Genomics.

[14]  Tiina Nakari-Setälä,et al.  Hydrophobins: the protein-amphiphiles of filamentous fungi. , 2005, FEMS microbiology reviews.

[15]  A. Salamov,et al.  The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry , 2012, PLoS genetics.

[16]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[17]  C. Young,et al.  Chemotypic diversity of epichloae, fungal symbionts of grasses , 2012 .

[18]  P. Kirk,et al.  Dictionary of the Fungi , 2008 .

[19]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[20]  David Hewitt,et al.  The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. , 2009, Systematic biology.

[21]  Christopher P. L. Grof,et al.  Sucrose transporters of higher plants. , 2010, Current opinion in plant biology.

[22]  F. Sasse,et al.  Fungal endophytes and bioprospecting , 2009 .

[23]  J. Miller,et al.  Antifungal metabolites from fungal endophytes of Pinus strobus. , 2011, Phytochemistry.

[24]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[25]  B. Schulz,et al.  The endophytic continuum. , 2005, Mycological research.

[26]  P. Wincker,et al.  Transcriptome of Aphanomyces euteiches: New Oomycete Putative Pathogenicity Factors and Metabolic Pathways , 2008, PloS one.

[27]  R. Hückelhoven,et al.  Endophyte or parasite--what decides? , 2006, Current opinion in plant biology.

[28]  Kai Blin,et al.  antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers , 2013, Nucleic Acids Res..

[29]  G. Strobel,et al.  Bioprospecting for Microbial Endophytes and Their Natural Products , 2003, Microbiology and Molecular Biology Reviews.

[30]  G. Sherlock,et al.  Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads , 2010, BMC Genomics.

[31]  R. Yi,et al.  Characterization of the glycoside hydrolase family 15 glucoamylase gene from the ectomycorrhizal basidiomycete Tricholoma matsutake , 2012, Mycoscience.

[32]  J. Kan Licensed to kill: the lifestyle of a necrotrophic plant pathogen , 2006 .

[33]  A. Steinbüchel,et al.  Biodegradation of Natural Rubber and Related Compounds: Recent Insights into a Hardly Understood Catabolic Capability of Microorganisms , 2005, Applied and Environmental Microbiology.

[34]  H. Schoonbeek,et al.  Fungal transporters involved in efflux of natural toxic compounds and fungicides. , 2000, Fungal genetics and biology : FG & B.

[35]  Chengshu Wang,et al.  Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products , 2015, BMC Genomics.

[36]  Pari Skamnioti,et al.  Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism , 2010, Science.

[37]  T. Burgess,et al.  Fungal Planet description sheets: 107–127 , 2012, Persoonia.

[38]  J. Hess,et al.  Transposable Element Dynamics among Asymbiotic and Ectomycorrhizal Amanita Fungi , 2014, Genome biology and evolution.

[39]  A. Salamov,et al.  Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi , 2012, PLoS pathogens.

[40]  R. V. D. van der Hoorn,et al.  Enzyme-inhibitor interactions at the plant-pathogen interface. , 2008, Current opinion in plant biology.

[41]  J. V. van Kan Licensed to kill: the lifestyle of a necrotrophic plant pathogen. , 2006, Trends in plant science.

[42]  J. de la Cruz,et al.  An Antifungal Exo-α-1,3-Glucanase (AGN13.1) from the Biocontrol Fungus Trichoderma harzianum , 2001, Applied and Environmental Microbiology.

[43]  D. Wipf,et al.  Sugar transporters in plants and in their interactions with fungi. , 2012, Trends in plant science.

[44]  Endophytic fungi from Peruvian highland and lowland habitats form distinctive and host plant-specific assemblages , 2013, Biodiversity and Conservation.

[45]  H. Ochman,et al.  Causes and Consequences of Genome Expansion in Fungi , 2011, Genome biology and evolution.

[46]  Elissaveta G. Arnaoudova,et al.  Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci , 2013, PLoS genetics.

[47]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[48]  J. Baeza,et al.  Evaluation of fungal endophytes for lignocellulolytic enzyme production and wood biodegradation , 2006 .

[49]  D. Silvestro,et al.  raxmlGUI: a graphical front-end for RAxML , 2011, Organisms Diversity & Evolution.

[50]  I. Grigoriev,et al.  Chapter One – Fungal Genomics: Sequencing and Annotation , 2014 .

[51]  M. Heil,et al.  Endophytes versus biotrophic and necrotrophic pathogens—are fungal lifestyles evolutionarily stable traits? , 2013, Fungal Diversity.

[52]  J. Bennett,et al.  Fungal secondary metabolism — from biochemistry to genomics , 2005, Nature Reviews Microbiology.

[53]  E. Baena-González,et al.  Sugar sensing and signaling in plants: conserved and novel mechanisms. , 2006, Annual review of plant biology.

[54]  T. Tonozuka,et al.  Insights into the reaction mechanism of glycosyl hydrolase family 49. Site-directed mutagenesis and substrate preference of isopullulanase. , 2004, European journal of biochemistry.

[55]  H. Schoonbeek,et al.  Fungal ABC transporters and microbial interactions in natural environments. , 2002, Molecular plant-microbe interactions : MPMI.

[56]  M. Himmel,et al.  In planta expression of A. cellulolyticus Cel5A endocellulase reduces cell wall recalcitrance in tobacco and maize , 2011, Biotechnology for biofuels.

[57]  H. Piontkivska,et al.  Evolutionary analysis of glycosyl hydrolase family 28 (GH28) suggests lineage-specific expansions in necrotrophic fungal pathogens. , 2011, Gene.

[58]  J. Miller,et al.  Secondary metabolites from anti-insect extracts of endophytic fungi isolated from Picea rubens. , 2010, Phytochemistry.

[59]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[60]  J. Spatafora,et al.  Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes , 2007, Molecular ecology.

[61]  P. Coley,et al.  Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses , 2011, Mycologia.

[62]  K. Ohtani,et al.  Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. , 2013, FEMS microbiology reviews.

[63]  M. Montero,et al.  Expression of an α‐1,3‐glucanase during mycoparasitic interaction of Trichoderma asperellum , 2005 .

[64]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[65]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[66]  F. Lutzoni,et al.  Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? , 2007, Ecology.

[67]  A. Salamov,et al.  The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi , 2011, Science.

[68]  N. Talbot Living the Sweet Life: How Does a Plant Pathogenic Fungus Acquire Sugar from Plants? , 2010, PLoS biology.

[69]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[70]  Jae-Hyuk Yu,et al.  Regulation of secondary metabolism in filamentous fungi. , 2005, Annual review of phytopathology.

[71]  Bernard Henrissat,et al.  Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea , 2011, PLoS genetics.

[72]  D. Hibbett,et al.  Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. , 2015, Fungal genetics and biology : FG & B.

[73]  Yangkai Cai Sucrose Transporters in Higher Plants , 2006 .

[74]  A. Sharon,et al.  9 - Fungal Pathogenicity Genes , 2003 .

[75]  M. Gerstein,et al.  Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides , 2012, PLoS genetics.

[76]  D. Du,et al.  Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla , 2014, PloS one.

[77]  J. Ward,et al.  Evolution of Plant Sucrose Uptake Transporters , 2012, Front. Plant Sci..

[78]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[79]  R. Gazis,et al.  Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. , 2012, Molecular phylogenetics and evolution.

[80]  P. Dyer,et al.  Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. , 2012, FEMS microbiology reviews.

[81]  M. Chengalroyen,et al.  The Biodegradation of Latex Rubber: A Minireview , 2013, Journal of Polymers and the Environment.

[82]  P. Cannon,et al.  Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. , 2002, Mycologia.

[83]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[84]  S. Lumyong,et al.  Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? , 2010, Fungal Diversity.

[85]  Mira V. Han,et al.  Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. , 2013, Molecular biology and evolution.

[86]  F. Asiegbu,et al.  Distribution and bioinformatic analysis of the cerato-platanin protein family in Dikarya , 2013, Mycologia.

[87]  A. Arnold,et al.  Fungal endophytes: diversity and functional roles. , 2009, The New phytologist.

[88]  Andrew F. S. Taylor,et al.  Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses , 2009, BMC Evolutionary Biology.

[89]  Chen Wang,et al.  The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte , 2014, Scientific Reports.

[90]  N. Moran,et al.  Extreme genome reduction in symbiotic bacteria , 2011, Nature Reviews Microbiology.

[91]  Katherine C. H. Amrine,et al.  Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens , 2015, BMC Genomics.

[92]  P. Proksch,et al.  Fungal endophytes - secret producers of bioactive plant metabolites. , 2013, Die Pharmazie.

[93]  S. Kauppinen,et al.  Biochemical Analysis of Recombinant Fungal Mutanases , 2000, The Journal of Biological Chemistry.

[94]  B. Sattelmacher The apoplast and its significance for plant mineral nutrition. , 2001, The New phytologist.