Factorization forests for infinite words and applications to countable scattered linear orderings

The theorem of factorization forests of Imre Simon shows the existence of nested factorizations-a la Ramsey-for finite words. This theorem has important applications in semigroup theory, and beyond. We provide two improvements to the standard result. First we improve on all previously known bounds. Second, we extend it to 'every linear ordering'. We use this last variant in a simplified proof of the translation of recognizable languages over countable scattered linear orderings to languages accepted by automata.

[1]  Olivier Carton,et al.  An Eilenberg Theorem for Words on Countable Ordinals , 1998, LATIN.

[2]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[3]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[4]  Berndt Farwer,et al.  ω-automata , 2002 .

[5]  Dana S. Scott,et al.  Finite Automata and Their Decision Problems , 1959, IBM J. Res. Dev..

[6]  Olivier Carton,et al.  Logic and Rational Languages of Words Indexed by Linear Orderings , 2009, Theory of Computing Systems.

[7]  J. Richard Büchi Transfinite Automata Recursions and Weak Second Order Theory of Ordinals , 1990 .

[8]  Thomas Colcombet,et al.  Bounds in w-Regularity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[9]  Thomas Colcombet,et al.  A Combinatorial Theorem for Trees , 2007, ICALP.

[10]  Thomas Colcombet Factorisation forests for infinite words application to countable scattered linear orderings , 2007 .

[11]  Jérémie Chalopin,et al.  On factorization forests of finite height , 2004, Theor. Comput. Sci..

[12]  Nicolas Bedon Automata, Semigroups and Recognizability of Words on Ordinals , 1998, Int. J. Algebra Comput..

[13]  Jean-Eric Pin,et al.  Semigroups and automata on infinite words , 2007 .

[14]  Jean-Éric Pin,et al.  Equations Defining the Polynomial Closure of a Lattice of Regular Languages , 2009, ICALP.

[15]  Saharon Shelah,et al.  Modest Theory of Short Chains. II , 1979, J. Symb. Log..

[16]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[17]  Yaacov Choueka Finite Automata, Definable Sets, and Regular Expressions over omega^n-Tapes , 1978, J. Comput. Syst. Sci..

[18]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[19]  Véronique Bruyère,et al.  Automata on Linear Orderings , 2002, Developments in Language Theory.

[20]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[21]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[22]  Parosh Aziz Abdulla,et al.  R-Automata , 2008, CONCUR.

[23]  Manfred Kufleitner The Height of Factorization Forests , 2008, MFCS.

[24]  Countably Complementable,et al.  LINEAR ORDERINGS , 2006 .

[25]  Pascal Weil,et al.  Polynomial closure and unambiguous product , 1995, Theory of Computing Systems.

[26]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[27]  Manfred Kufleitner A Proof of the Factorization Forest Theorem , 2007, ArXiv.

[28]  G. Lallement Semigroups and combinatorial applications , 1979 .

[29]  Tom C. Brown An interesting combinatorial method in the theory of locally finite semigroups. , 1971 .

[30]  Yuri Gurevich Modest Theory of Short Chains. I , 1979, J. Symb. Log..

[31]  Thomas Wilke An Eilenberg Theorem for Infinity-Languages , 1991, ICALP.

[32]  Kosaburo Hashiguchi,et al.  Algorithms for Determining Relative Star height and Star Height , 1988, IFIP Congress.

[33]  Thomas Colcombet Factorisation Forests for Infinite Words , 2007, FCT.

[34]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[35]  Bertrand Le Saëc,et al.  Semigroups with Idempotent stabilizers and Applications to Automata Theory , 1991, Int. J. Algebra Comput..

[36]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[37]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[38]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[39]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.