A Current-Feedback Instrumentation Amplifier With a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error

This paper presents a power-efficient current-feedback instrumentation amplifier (CFIA) with high gain accuracy. It is intended for interfacing precision bridge transducers and thermocouples that output mV-level signals. The gain accuracy of the CFIA is mainly limited by the mismatch of two transconductors. Applying dynamic element matching (DEM) to them ensures good gain accuracy, gain drift, and linearity. As a result, these transconductors can be implemented as simple differential pairs, resulting in significantly improved power efficiency when compared with the use of resistor-degenerated stages. To suppress the output ripple caused by DEM, an automatic gain error reduction loop dynamically nulls the Gm mismatch of the input and feedback transconductors, thus eliminating the need for trimming. The prototype chip was realized in a 0.7-μm CMOS process. Measurement results show a maximum 0.06% untrimmed gain error and a 5-ppm INL at a gain of 100. This work also achieves an NEF of 11.2, a maximum input-referred offset of 3 μV, and a CMRR of 127 dB while consuming only 290 μA at a 5-V supply.

[1]  M. Degrauwe,et al.  A Micropower CMOS-Instrumentation Amplifier , 1985, IEEE Journal of Solid-State Circuits.

[2]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier With a Gain Error Reduction Loop and 0.06% Untrimmed Gain Error , 2011, IEEE J. Solid State Circuits.

[3]  Wilko J. Kindt,et al.  A 140 dB-CMRR Current-Feedback Instrumentation Amplifier Employing Ping-Pong Auto-Zeroing and Chopping , 2010, IEEE Journal of Solid-State Circuits.

[4]  R. Burt,et al.  A Micropower Chopper-Stabilized Operational Amplifier Using a SC Notch Filter With Synchronous Integration Inside the Continuous-Time Signal Path , 2006, IEEE Journal of Solid-State Circuits.

[5]  Andrew T. K. Tang A 3μV-offset operational amplifier with 20nV/*Hz input noise PSD at DC employing both chopping and autozeroing , 2002 .

[6]  N. Yoshimoto,et al.  A 10.3 Gb/s Burst-Mode CDR Using a ΔΣ DAC , 2008, IEEE Journal of Solid-State Circuits.

[7]  Peter G. Blanken,et al.  Chopped Σ∆ A/D Converter for Battery Management , 2002 .

[8]  Kofi A. A. Makinwa,et al.  A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2µV offset , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[9]  Wilko J. Kindt,et al.  A 140dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[10]  P.K. Chan,et al.  A CMOS chopper-stabilized differential difference amplifier for biomedical integrated circuits , 2004, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04..

[11]  Yoshinori Kusuda Auto Correction Feedback for ripple suppression in a chopper amplifier , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[12]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier with 5μV Offset for Bidirectional High-Side Current-Sensing , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[13]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[14]  J.H. Huijsing,et al.  A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz $1/f$ Noise Corner and an AC-Coupled Ripple Reduction Loop , 2009, IEEE Journal of Solid-State Circuits.

[15]  Johan H. Huijsing,et al.  Indirect Current Feedback Instrumentation Amplifier with a Common Mode Input Range That Includes the Negative Rail , 1992 .

[16]  A. Bakker,et al.  A CMOS nested-chopper instrumentation amplifier with 100-nV offset , 2000, IEEE Journal of Solid-State Circuits.

[17]  W. Guggenbuhl,et al.  A versatile building block: the CMOS differential difference amplifier , 1987 .