Sublinear-time approximation of Euclidean minimum spanning tree

We consider the problem of finding the weight of a Euclidean minimum spanning tree for a set of n points in ℝd. We focus on the situation when the input point set is supported by certain basic (and commonly used) geometric data structures that can provide efficient access to the input in a structured way. We present an algorithm that estimates with high probability the weight of a Euclidean minimum spanning tree of a set of points to within 1 + ε using only Õ(√ poly(1/ε)) queries for constant d. The algorithm assumes that the input is supported by a minimal bounding cube enclosing it, by orthogonal range queries, and by cone approximate nearest neighbors queries.

[1]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[2]  Dan E. Willard Predicate-Oriented Database Search Algorithms , 1978, Outstanding Dissertations in the Computer Sciences.

[3]  George S. Lueker,et al.  A data structure for orthogonal range queries , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[4]  Andrew Chi-Chih Yao,et al.  On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems , 1977, SIAM J. Comput..

[5]  Bernard Chazelle,et al.  Filtering search: A new approach to query-answering , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  Bernard Chazelle,et al.  A Functional Approach to Data Structures and Its Use in Multidimensional Searching , 1988, SIAM J. Comput..

[7]  Pravin M. Vaidya,et al.  Minimum Spanning Trees in k-Dimensional Space , 1988, SIAM J. Comput..

[8]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[9]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: I. The reporting case , 1990, JACM.

[10]  Otfried Cheong,et al.  Euclidean minimum spanning trees and bichromatic closest pairs , 1990, SCG '90.

[11]  Bernard Chazelle,et al.  Lower bounds for orthogonal range searching: part II. The arithmetic model , 1990, JACM.

[12]  Jeffrey S. Salowe Constructing multidimensional spanner graphs , 1991, Int. J. Comput. Geom. Appl..

[13]  Martin J. Dürst,et al.  The design and analysis of spatial data structures. Applications of spatial data structures: computer graphics, image processing, and GIS , 1991 .

[14]  Jirí Matousek Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[15]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[16]  Jirí Matousek,et al.  Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[17]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[18]  David Eppstein,et al.  Dynamic Euclidean minimum spanning trees and extrema of binary functions , 1995, Discret. Comput. Geom..

[19]  Jeff Erickson,et al.  On the relative complexities of some geometric problems , 1995, CCCG.

[20]  Friedhelm Meyer auf der Heide,et al.  Dynamic Data Structures for Realtime Management of Large Geormetric Scences (Extended Abstract) , 1997, ESA.

[21]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[22]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[23]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[24]  Michiel H. M. Smid,et al.  Dynamic algorithms for geometric spanners of small diameter: Randomized solutions , 1999, Comput. Geom..

[25]  David Eppstein,et al.  Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.

[26]  Ronitt Rubinfeld,et al.  Approximating the Minimum Spanning Tree Weight in Sublinear Time , 2001, ICALP.

[27]  Artur Czumaj,et al.  Property Testing with Geometric Queries , 2001, ESA.

[28]  Joseph S. B. Mitchell,et al.  Computational Geometry Column 42 , 2001, Int. J. Comput. Geom. Appl..

[29]  A. Czumaj,et al.  Property Testing with Geometric Queries (Extended Abstract) , 2001 .

[30]  Joachim Gudmundsson,et al.  Fast Greedy Algorithms for Constructing Sparse Geometric Spanners , 2002, SIAM J. Comput..

[31]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[32]  Hanan Samet,et al.  Applications of spatial data structures - computer graphics, image processing, and GIS , 1990 .