SUPERSET: A (Super)Natural Variant of the Card Game SET
暂无分享,去创建一个
[1] Diane Maclagan,et al. The card game set , 2003 .
[2] Leo Storme,et al. The Classification of the Largest Caps in AG(5, 3) , 2002, J. Comb. Theory, Ser. A.
[3] W. T. Harwood,et al. Problem Set , 2018, Friction, Wear, Lubrication.
[4] Aaron Potechin. Maximal caps in AG (6, 3) , 2008, Des. Codes Cryptogr..
[5] Michael Bateman,et al. New Bounds on cap sets , 2011, 1101.5851.
[6] Raymond Hill,et al. Caps and codes , 1978, Discret. Math..
[7] Roy Meshulam,et al. On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions , 1995, J. Comb. Theory, Ser. A.
[8] Michael Lampis,et al. The Computational Complexity of the Game of Set and Its Theoretical Applications , 2014, LATIN.
[9] A. Robert Calderbank,et al. Maximal three-independent subsets of {0, 1, 2}n , 1994, Des. Codes Cryptogr..
[10] Yves Edel,et al. Bounds on affine caps , 2002 .
[11] R. Hill. On Pellegrino's 20-Caps in S4, 3 , 1983 .
[12] Gary Gordon,et al. The Joy of SET: The Many Mathematical Dimensions of a Seemingly Simple Card Game , 2016 .
[13] Yves Edel. Extensions of Generalized Product Caps , 2004, Des. Codes Cryptogr..