How to Compare Noisy Patches? Patch Similarity Beyond Gaussian Noise

Many tasks in computer vision require to match image parts. While higher-level methods consider image features such as edges or robust descriptors, low-level approaches (so-called image-based) compare groups of pixels (patches) and provide dense matching. Patch similarity is a key ingredient to many techniques for image registration, stereo-vision, change detection or denoising. Recent progress in natural image modeling also makes intensive use of patch comparison.A fundamental difficulty when comparing two patches from “real” data is to decide whether the differences should be ascribed to noise or intrinsic dissimilarity. Gaussian noise assumption leads to the classical definition of patch similarity based on the squared differences of intensities. For the case where noise departs from the Gaussian distribution, several similarity criteria have been proposed in the literature of image processing, detection theory and machine learning.By expressing patch (dis)similarity as a detection test under a given noise model, we introduce these criteria with a new one and discuss their properties. We then assess their performance for different tasks: patch discrimination, image denoising, stereo-matching and motion-tracking under gamma and Poisson noises. The proposed criterion based on the generalized likelihood ratio is shown to be both easy to derive and powerful in these diverse applications.

[1]  Jaakko Astola,et al.  From Local Kernel to Nonlocal Multiple-Model Image Denoising , 2009, International Journal of Computer Vision.

[2]  Dimitri Van De Ville,et al.  SURE-Based Non-Local Means , 2009, IEEE Signal Processing Letters.

[3]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[4]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[5]  Wentao An,et al.  Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[6]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[7]  Florence Tupin,et al.  Poisson NL means: Unsupervised non local means for Poisson noise , 2010, 2010 IEEE International Conference on Image Processing.

[8]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[9]  Peter N. Yianilos Metric Learning via Normal Mixtures , 2007 .

[10]  Florence Tupin,et al.  Débruitage Non-Local Itératif basé sur un Critère de Similarité Probabiliste , 2009 .

[11]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Alfred O. Hero,et al.  Comparison of GLR and invariant detectors under structured clutter covariance , 2001, IEEE Trans. Image Process..

[14]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[15]  Luisa Verdoliva,et al.  A nonlocal approach for SAR image denoising , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[17]  Kostadin Dabov,et al.  A NONLOCAL AND SHAPE-ADAPTIVE TRANSFORM-DOMAIN COLLABORATIVE FILTERING , 2008 .

[18]  T. Minka Bayesian inference, entropy, and the multinomial distribution , 2003 .

[19]  Jean-Michel Morel,et al.  Non-Local Means Denoising , 2011, Image Process. Line.

[20]  Jonathan Baxter,et al.  Learning internal representations , 1995, COLT '95.

[21]  KatkovnikVladimir,et al.  From Local Kernel to Nonlocal Multiple-Model Image Denoising , 2010 .

[22]  Annika Lang,et al.  A new similarity measure for nonlocal filtering in the presence of multiplicative noise , 2012, Comput. Stat. Data Anal..

[23]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[24]  Alessandro Foi,et al.  Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising , 2011, IEEE Transactions on Image Processing.

[25]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  Florence Tupin,et al.  Patch similarity under non Gaussian noise , 2011, 2011 18th IEEE International Conference on Image Processing.

[27]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[28]  Maurice G. Kendall,et al.  The Advanced Theory of Statistics, Vol. 2: Inference and Relationship , 1979 .

[29]  Alessandro Foi,et al.  Denoising of single-look SAR images based on variance stabilization and nonlocal filters , 2010, 2010 International Conference on Mathematical Methods in Electromagnetic Theory.

[30]  Patrick Bouthemy,et al.  Patch-Based Nonlocal Functional for Denoising Fluorescence Microscopy Image Sequences , 2010, IEEE Transactions on Medical Imaging.

[31]  Matthias W. Seeger,et al.  Covariance Kernels from Bayesian Generative Models , 2001, NIPS.

[32]  Guy Gilboa,et al.  Nonlocal Linear Image Regularization and Supervised Segmentation , 2007, Multiscale Model. Simul..

[33]  Laurent D. Cohen,et al.  Non-local Regularization of Inverse Problems , 2008, ECCV.

[34]  T. Minka Distance measures as prior probabilities , 2000 .

[35]  H. Hudson A Natural Identity for Exponential Families with Applications in Multiparameter Estimation , 1978 .

[36]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[37]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[38]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[39]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[40]  Florence Tupin,et al.  Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights , 2009, IEEE Transactions on Image Processing.

[41]  Guillermo Sapiro,et al.  Non-local sparse models for image restoration , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[42]  A. Ms.PatilV. Region Filling and Object Removal by Exemplar-Based Image Inpainting , 2012 .

[43]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[44]  E. L. Lehmann,et al.  Optimum Invariant Tests , 1959 .

[45]  Charles-Alban Deledalle,et al.  Non-local Methods with Shape-Adaptive Patches (NLM-SAP) , 2012, Journal of Mathematical Imaging and Vision.

[46]  Baining Guo,et al.  Real-time texture synthesis by patch-based sampling , 2001, TOGS.

[47]  William T. Freeman,et al.  The Patch Transform , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Peter L. Bartlett,et al.  The Canonical Distortion Measure in Feature Space and 1-NN Classification , 1997, NIPS.

[49]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[50]  S. Kay,et al.  An Invariance property of the generalized likelihood ratio test , 2003, IEEE Signal Processing Letters.

[51]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[52]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[53]  Joseph Salmon,et al.  On Two Parameters for Denoising With Non-Local Means , 2010, IEEE Signal Processing Letters.

[54]  Florence Tupin,et al.  NL-InSAR : Non-Local Interferogram Estimation , 2010 .

[55]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[56]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Fawwaz T. Ulaby,et al.  Statistical properties of logarithmically transformed speckle , 2002, IEEE Trans. Geosci. Remote. Sens..

[58]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[59]  J. Goodman Some fundamental properties of speckle , 1976 .

[60]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[61]  Yasuyuki Matsushita,et al.  An Intensity Similarity Measure in Low-Light Conditions , 2006, ECCV.

[62]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[63]  Pierrick Coupé,et al.  Bayesian Non-local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal , 2007, SSVM.

[64]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[65]  Charles Kervrann,et al.  Local Adaptivity to Variable Smoothness for Exemplar-Based Image Regularization and Representation , 2008, International Journal of Computer Vision.

[66]  Stephen Lin,et al.  A Probabilistic Intensity Similarity Measure based on Noise Distributions , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[68]  Harrison H. Zhou,et al.  The root–unroot algorithm for density estimation as implemented via wavelet block thresholding , 2010 .

[69]  Florence Tupin,et al.  NL-InSAR: Nonlocal Interferogram Estimation , 2011, IEEE Transactions on Geoscience and Remote Sensing.