Sensor-based globally asymptotically stable range-only simultaneous localization and mapping

Range-only simultaneous localization and mapping is addressed in this paper, through the design, analysis, and experimental validation of a globally asymptotically stable (GAS) filter. A nonlinear sensor-based system is designed and its dynamics augmented so that the proposed formulation can be considered as linear time-varying for the purpose of observability analysis. This allows the establishment of observability results related to the original nonlinear system that naturally lead to the design of a Kalman filter with GAS error dynamics. The performance of the proposed algorithm is assessed resorting to a set of realistic simulations and to the results obtained from experimental tests.

[1]  Wolfram Burgard,et al.  An evaluation of the RGB-D SLAM system , 2012, 2012 IEEE International Conference on Robotics and Automation.

[2]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[3]  José A. Castellanos,et al.  Robocentric map joining: Improving the consistency of EKF-SLAM , 2007, Robotics Auton. Syst..

[4]  Hugh Durrant-Whyte,et al.  Simultaneous Localisation and Mapping ( SLAM ) : Part I The Essential Algorithms , 2006 .

[5]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[6]  Joaquim Salvi,et al.  Long-term mapping and localization using feature stability histograms , 2013, Robotics Auton. Syst..

[7]  Carlos Silvestre,et al.  GES source localization based on discrete-time position and single range measurements , 2013, 21st Mediterranean Conference on Control and Automation.

[8]  Carlos Silvestre,et al.  Globally Asymptotically Stable Sensor-Based Simultaneous Localization and Mapping , 2013, IEEE Transactions on Robotics.

[9]  Sanjiv Singh,et al.  Range-only SLAM for robots operating cooperatively with sensor networks , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[10]  Sebastian Thrun,et al.  The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures , 2006, Int. J. Robotics Res..

[11]  Randall Smith,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[12]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[13]  Hugh F. Durrant-Whyte,et al.  New approach to simultaneous localization and dynamic map building , 1996, Defense, Security, and Sensing.

[14]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[15]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[16]  Carlos Silvestre,et al.  3-D inertial trajectory and map online estimation: Building on a GAS sensor-based SLAM filter , 2013, 2013 European Control Conference (ECC).

[17]  R. Brockett Finite Dimensional Linear Systems , 2015 .

[18]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[19]  Carlos Silvestre,et al.  Single range aided navigation and source localization: Observability and filter design , 2011, Syst. Control. Lett..

[20]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[21]  Nicu Sebe,et al.  Similarity Matching in Computer Vision and Multimedia , 2008, Comput. Vis. Image Underst..

[22]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[23]  B. Anderson Stability properties of Kalman-Bucy filters , 1971 .

[24]  Carlos Silvestre,et al.  Preliminary results on globally asymptotically stable simultaneous localization and mapping in 3-D , 2013, 2013 American Control Conference.

[25]  Basilio Sierra,et al.  Loop-closing: A typicality approach , 2011, Robotics Auton. Syst..

[26]  Hari Balakrishnan,et al.  6th ACM/IEEE International Conference on on Mobile Computing and Networking (ACM MOBICOM ’00) The Cricket Location-Support System , 2022 .

[27]  Binoy Pinto,et al.  Speeded Up Robust Features , 2011 .

[28]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[29]  Gamini Dissanayake,et al.  A new state vector for range-only SLAM , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[30]  Edwin Olson,et al.  Robust Range-Only Beacon Localization , 2006 .

[31]  Eduardo Mario Nebot,et al.  Consistency of the EKF-SLAM Algorithm , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[33]  Sanjiv Singh,et al.  Motion-aided network SLAM with range , 2012, Int. J. Robotics Res..

[34]  Emanuele Menegatti,et al.  Range-only SLAM with a mobile robot and a Wireless Sensor Networks , 2009, 2009 IEEE International Conference on Robotics and Automation.

[35]  Carlos Silvestre,et al.  Sensor-based simultaneous localization and mapping — Part I: GAS robocentric filter , 2012, 2012 American Control Conference (ACC).

[36]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[37]  Guanrong Chen,et al.  Introduction to random signals and applied Kalman filtering, 2nd edn. Robert Grover Brown and Patrick Y. C. Hwang, Wiley, New York, 1992. ISBN 0‐471‐52573‐1, 512 pp., $62.95. , 1992 .

[38]  Javier González,et al.  Efficient probabilistic Range-Only SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[39]  Carlos Silvestre,et al.  On the observability of linear motion quantities in navigation systems , 2011, Syst. Control. Lett..